

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) tit	Code				
Mathematical Physiology					
Lecturer(s)	Department(s) where the cour	se unit (module) is delivered			
Coordinator: prof. Aidas Alaburda	Faculty for Natural Sciences, De	eartment of Neurobiology and			
	Biophysics, Sauletekio Av. 7 Vi	lnius, LT-10222			

Other(s):

Study cycle	Type of the course unit (module)
Full-time studies (2 nd stage)	Compulsory

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Face-to-face, self-study Lectures, and practice	III semester	English

Requirements for students						
Prerequisites:	Additional requirements (if any):					
basics of mathematical analysis						

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	150	64	86

Purpose of the course unit (mod	Purpose of the course unit (module): programme competences to be developed								
Readiness for life-long continuous professional education									
Knowledge acquired and understanding									
Knowledge application	Knowledge application								
Decision making									
Learning outcomes of the course unit (module)	Learning outcomes of the course unit (module) Teaching and learning Assessment methods								
	methods								
3.1 Be able to critically analyse their own	Exercises, self study.	Exam							
professional practices with a view to improving									
them									
4.3 Perceive mathematical models describing	Lectures, exercises, self study.	Exam							
evolutionary processes of biological systems									
5.2 Be able to describe evolutionary processes of	Exam								
biological systems in mathematical language	biological systems in mathematical language								
6.1 Be able select an appropriate modelling	Exercises, self study.	Exam							
strategy for a given biological domain and problem									

and assignments

	Lectures	Tutorials	Seminars	Exercises	Laboratory work	Internship/work	Contact hours	Self-study hours	Assignments
1. Introduction	1						1		
2. Living systems and differential equations. Population dynamics. Drug administration.	2			2			4	4	Reading lecture related literature
3. First order differential equations with separable variables	1			2			3	4	Reading lecture related literature
4. Linear first order differential equations	2			2			4	4	Reading lecture related literature
5. Different equations with constant coefficients	2			4			6	8	Reading lecture related literature
6. Systems of differential equations	2			2			4	6	Reading lecture related literature
7. Boundary conditions	2			2			4	10	Reading lecture related literature
8. Partial differential equations. Diffusion. Equation of string.	4			6			10	10	Reading lecture related literature
9. Mathematical description on neurons. Potential distribution in dendrites	4			2			6	5	Reading lecture related literature
10. Model of blood circulation.	2			2			4	6	Reading lecture related literature
11. Mathematical description of systems. Neuronal networks.	2			2			4	6	Reading lecture related literature
12. Systems of control. Biological control systems	4			2			6	10	Reading lecture related literature
13. Linear, exponential and logistic dynamics of systems.	2			2			4	6	Reading lecture related literature
14. Kinetics of chemical and biochemical reactions. Stability of equilibrium points.	2			2			4	7	Reading lecture related literature
Total	32			32			64	86	

Assessment strategy	Weigh t,%	Deadline	Assessment criteria
Exam	100	session	Exam consists of two parts: Computer – based test (max. 6) and practical solution of differential equation (max. 4). Computer –based test consists of 50 questions (right answer or answers should be selected) and covers all topics of the course. The grade is proportional to number of correct answers. Practical solution of differential equation – student should practically solve a given differential equation. Evaluation: selection of appropriate method (max. 2) and getting the correct solution (max. 2)

Author	Year of public ation	Title		Issue of a periodical or volume of a publication			Publishing place and house or web link
Compulsary reading							
C.H. Taaubes	2008	"Modeling Differen	ial				Cambridge University Press
		Equations in Biology"					

D.S. Jones, M.J. Plank & B.D. Sleeman	2009	"Differential equations and mathematical biology"	Chapman&Hall/CRC
Optional reading			
M. C. K. Khoo	2018	"Physiological Control Systems : Analysis, Simulation, and Estimation", II ediion	Wiley-IEEE Press
C. Koch, I. Segev	1989	"Methods in Neuronal Modeling: From synapses to networks"	MIT Press
J.D Murray	2007	"Mathematical Biology I: An Introduction"	Springer
J.D Murray	2011	"Mathematical Biology II: Spatial Models and Biomedical Applications"	Springer