

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code	
Solid State Reactions		
Academic staff C		mic unit(s)

Academic Stan	
Coordinating: Prof. Aivaras Kareiva	Department of Inorganic Chemistry, Faculty of
	Chemistry and Geosciences
Other:	-

Study cycle	Type of the course unit
Master's	

Mode of delivery	Semester or period when it is delivered	Language of instruction
Lectures 32	Autumn semester	Lithuanian
Seminars 32		
Tutorials 36		
Individual work 30		

Requisites				
Prerequisites: Bachelor of Science	Co-requisites (if relevant):			

Number of ECTS credits allocated	Student's workload (total)	Contact hours	Individual work
5	130	100	30

Purpose of the course unit						
To provide students with knowledge of contemporary modern inorganic chemistry						
Learning outcomes of the course unit	Teaching and learning methods	Assessment methods				
A.1., A.2., A.4., C.1. Students will get the ability of analytical, critical and creative thinking to characterize solid state chemical reactions; the ability to evaluate the thermodynamics of solid state chemical reactions;	Literature studies, active lecture, exercises, problem teaching, comparative analysis, independent work.	Colloquium (written answers to questions of a mixed nature) - test writing, solution writing, exam				
A.1., C.1. A.3., C.2. Students will get the ability to evaluate the kinetics of solid state chemical reactions.	Lecture, independent work, discussion.	Colloquium (written answers to questions of a mixed nature) - test writing, solution writing, exam				
A.1., A.2., C.2., D.1. Students will get the ability to understand the general methods for investigating solid state reactions.	Problem teaching, problem solving, group discussion.	Colloquium (written answers to questions of a mixed nature) - test writing, solution writing, exam				
	T					

Contont	Contact hours	Individual work: time
Content	Contact nours	and assignments

	Lectures	Tutorials	Seminars	Workshops	Laboratory work	Internship	Contact hours, total	Individual work	Tasks for individual work
1. Solid state reactions	2	2	2				6	2	By topic.
2. Thermodynamics	2	2	2				6	2	By topic.
3. Methods of thermodynamics investigation	2	4	2				8	2	By topic.
4. Electrochemical methods5. Heterogeneous equilibrium method	2	4 2	2				8 6	2	By topic. By topic.
6. Thermochemical methods	2	2	2				6	2	By topic.
7. Methods of investigation of mechanisms	2	2	2				6	2	By topic.
8. Diffusion annealing method	2	2	2				6	2	By topic.
9. Kinetics of reactions between metal oxides	2	2	2				6	2	By topic.
10. Fundamentals of kinetics	2	1	1				4	2	By topic.
11. Techniques for material characterization	2	1	1				4	2	By topic.
12. Thermal analysis: theory and applications	2	2	2				6	1	By topic.
13. Interpretation of TG and DTA curves. Differential thermal analysis and scanning calorimetry	2	2	2				6	1	By topic.
14. Thermooptics, thermomechanics,thermodilametry, evolved gasanalysis	2	2	2				6	1	By topic.
15. Investigation of solid state reactions using XRD method	2	2	2				6	1	By topic.
16. Investigation of solid state reactions using SEM method	2	4	2				8	4	By topic.
Total	32	36	32	1			100	30	

Assessment strategy	Weight %	Deadline	Assessment criteria
1st colloquium.	33,33	March	Universally accepted. Answers to questions of a mixed or test nature according to the studied topics. The colloquium questions cover the topics covered during the lectures and discussions in the first part of the course. It is necessary to answer 10 questions, each of which is evaluated with 1 point (evaluation criteria below). The

			evaluations of individual questions are added together for the overall evaluation. 10 points make up 33,33 percent. exam grade. Evaluation Criteria: 1 point - the question was answered in detail and clearly, based not only on the lecture material, but also on your own, reasonable reasoning. 0.5 points - the question is answered in detail, but not very precisely, the answer contains significant errors. 0.25 points - the answer is unclear or incomplete, with several gross errors. 0 points - there is no answer or it is completely incorrect. The composition of the final grade is 100% cumulative.
2nd colloquium.	33,33	May	Universally accepted. Answers to questions of a mixed or test nature according to the studied topics. The colloquium questions cover the topics covered during the lectures and discussions in the second part of the course.
			It is necessary to answer 10 questions, each of which is evaluated with 1 point (evaluation criteria below). The evaluations of individual questions are added together for the overall evaluation. 10 points make up 33,33 percent. exam grade. Evaluation Criteria: 1 point - the question was answered in detail and clearly, based not only on the lecture material, but also on your own, reasonable reasoning. 0.5 points - the question is answered in detail, but not very precisely, the answer contains significant errors. 0.25 points - the answer is unclear or incomplete, with several gross errors. 0 points - there is no answer or it is completely incorrect.
Written tests.	33,33	March- May	The composition of the final grade is 100% cumulative. Universally accepted. Answers to the tasks according to the studied topics. The control questions cover the topics covered during the lectures and discussions in the respective parts of the course. It is necessary to answer 10 questions, each of which is evaluated with 1 point (evaluation criteria below). The evaluations of individual questions are added together for the overall evaluation. 10 points make up 33,33 percent. exam grade. Evaluation Criteria: 1 point - the question was answered in detail and clearly, based not only on the lecture material, but also on your own, reasonable reasoning. 0.5 points - the question is answered in detail, but not very precisely, the answer contains significant errors. 0.25 points - the answer is unclear or incomplete, with several gross errors. 0 points - there is no answer or it is completely incorrect.
			The composition of the final grade is 100% cumulative.

Author (-s)	Publishing year	Title	Issue of a periodical or volume of a publication	Publishing house or web link
		Required readi	ng	
A. R. West.	1995	Solid State		John Wiley and
		Chemistry and its		Sons, New York.
		Applications.		
Ed. by John P. Sibilia	1988	A Guide to		VCH Publishers,
		Materials		

	4007	Characterization and Chemical Analysis		Inc., New York
A. R. West	1997	Chemistry		Sons, New York.
Recommended reading				
A.F. WELLS	1975	4th ed., Structural Inorganic Chemistry		CLARENDON PRESS - OXFORD Oxford University Press Ely House, London W1
E. Riedel. C. Janiak.	2011	Anorganische Chemie		Berlin, New York: De Gruyter, 2011