

COURSE UNIT DESCRIPTION

Course unit title KINESIOGENOMICS AND BIOLOGY OF HEALTHY AGING

Code

Annotation The module focuses on the development and application of kinesiogenomics and biology of healthy aging in rehabilitation. Learning outcomes: students will know and understand the principles of kinesiogenomics and the theory of aging / longevity biology and research methodologies focused on ensuring the quality of life of people at all ages; will be able to analyze and critically evaluate the individual characteristics of the physical development, functional capacity and healthy aging, as well as pathological processes using theories of kinesiogenomics and other fields of science; will be able to apply research methodologies to solve complex rehabilitation problems, interpret the obtained data from an interdisciplinary point of view, analyze results, systematize and present conclusions, work independently and responsibly make decisions, organize and plan rehabilitation research, implement innovative ideas, improve professional knowledge and research results in practice.

Lecturer(s)	Department, Faculty				
Coordinating:	Faculty of Medicine Department of Rehabilitation,				
Valentina Ginevičienė, PhD, assoc. professor	Physical and Sports Medicine				
Other:	Santariškių str. 2, Vilnius, LT–08661				

Study cycle	Type of the course unit
Second	Required

Mode of delivery	Semester or period when it is delivered	Language of instruction
auditorium		Lithuanian, English

Requisites							
Prerequisites: basic knowledge of human anatomy and	Co-requisites (if relevant):						
physiology, molecular biology and genetics at the							
undergraduate level.							

Number of ECTS credits allocated	Student's workload (total)	Contact hours	Individual work
5	133	64	69

Purpose of the course unit: programme competences to be developed

The aim is to provide theoretical knowledge in the field of kinesiogenomics and molecular biology of healthy aging, to acquaint with the development, principles, tasks, innovations and perspective of these fields of science; with projects and methods of molecular biology research on physical activity (related to movement and functional capacity at all ages), their diversity, achievements, problems and applications in rehabilitation; with the principles of bioethics, research' strategy and methodology, their planning and execution, data collection and analysis. To provide knowledge about the biological phenomena and analysis of human physical fitness and healthy aging at various levels (cells, tissues, organs, body systems; from gene to trait); on the mechanisms of human genome management, gene expression and implications for physical development, functional capacity, activity and health in old age; about the genetically determined activity of physiological functions under normal, exercise and pathology conditions, about the individual body's response to exercise and adaptation to unusual conditions. To develop the ability to critically evaluate the individual features of the human physical capacity and pathological processes using theories of kinesiogenomics and other fields of science; to apply research methodologies in solving complex rehabilitation problems, to interpret the obtained data from an interdisciplinary point of view, to analyse and systematize the results of study, and formulate conclusions; to work independently and make responsible decisions, to organize and plan rehabilitation research activities, to implement innovative ideas and improve professional activities, to apply theoretical knowledge and research results in practice.

Learning outcomes of the course unit	Teaching and learning methods	Assessment methods
(pathological) conditions.A1, B1, E1 Will be able to analyze the overall concept of kinesiology, genetic and molecular biology analysis of physical capacity, and understand the relationship of these fields of 	Lecture: demonstration, problem presentation, plenary discussion. Seminar: debate, presentation and discussion of independent tasks (essays); group work, group discussion, counseling. Practice exercises: interpretation, solution and discussion of tasks; case analysis and presentation, situation modeling, group work. Self-study: analysis of scientific publications and genomic databases; preparation of a written essay.	Observation of discussions and debates. Assessment of completed exercise tasks. Evaluation of the written work (essay) and observation of its presentation in the seminar. Testing and examination: colloquia and exam.

,			hours	5			Individual work: time and assignments		
Course content: breakdown of the topics		Tutorials	Seminars	Workshops	Laboratory work	Internship/work	Contact hours,	Individual work	Assignments
1. Principles, tasks, development, most significant discoveries, achievements and projects in the fields of kinesiogenomics and biology of healthy aging.	2						2	4	Plenary debates and discussion
 Complexity of molecular biology of heating aging. Complexity of molecular biology of physical activity and healthy aging, concept of holistic analysis (phenomics, genomics, transcriptomics, metabolomics, proteomics and the relationship between these types of science). Levels of human body organization (from gene to trait). 	2		2	1			5	5	Analysis of scientific literature and genomic databases. Presentation of the chosen lecture subtopic. Debate.
3. Mechanisms of human genome management, gene expression and impact for health, physical	2		1	2			5	5	Analysis of scientific literature and genomic databases.

	r –	1		1	-		1	
development, and functional capacity. Genotype -								Presentation of the
phenotype relationship. DNA markers.								chosen lecture
								subtopic. Debate.
4. Assessment of physical activity (movement and	1		2	1		4	5	Analysis of scientific
functional capacity) of all ages individuals using								literature. Presentation
the theory and methodology of kinesiogenomics								of the chosen lecture
and molecular genetics.								subtopic. Debate.
5. The main stages, principles and genetic control	1		2	1		4	5	Analysis of scientific
of human development. Influence of genetic and							_	literature. Presentation
environmental factors on body formation in								of the chosen lecture
ontogenesis. Cellular and molecular - genetic								subtopic. Case
features of aging.								analysis.
6. Kinesiogenomics. Individual response to	2		1	2		5	5	Analysis of scientific
exercise and adaptation to unusual conditions.	2		-	~		5	5	literature. Presentation
Molecular adaptation of the nervous, muscular,								of the chosen lecture
respiratory, and cardiovascular systems to								subtopic. Case
exercise. Metabolic adaptation and genes involved								analysis. Debate.
in metabolism.								anarysis. Debate.
	2		h	1		-	-	A polygic of agientific
	2		2	1		5	5	Analysis of scientific literature. Presentation
rehabilitation. Strategies and methodology of								
research on genetic factors that determine human								of the chosen lecture
health and physical capacity.								subtopic. Case
								analysis.
8. Individualized research-based solution of	1		2	1		4	5	Analysis of scientific
rehabilitation and health problems of the elderly								literature. Presentation
and / or people with long-term disabilities.								of the chosen lecture
								subtopic. Debate.
9. Injuries and serious damage of health,	1		2	1		4	5	Analysis of scientific
symptoms, molecular mechanisms. The role of								literature. Presentation
genetic factors in the risk of trauma and pathology.								of the chosen lecture
								subtopic. Debate.
10. Kinesiogenomics and personalized medicine.	2		2	1		5	5	Analysis of scientific
Fundamentals of pharmacogenomics and								literature. Presentation
nutrigenomics. Metabolism of drugs and								of the chosen lecture
supplements, genetic control.								subtopic. Debate.
11. Influence of human epigenome and	1		2	1		4	4	Analysis of scientific
microbiome on health and physical performance.								literature. Presentation
Mechanisms of epigenetic alterations.								of the chosen lecture
I B I I B								subtopic. Debate.
12. Behavioral genetics and human psychosocial	2		2	1		5	4	Analysis of scientific
development. Individual response in the context of	1		-	-			*	literature. Presentation
lifestyle factors. Stressors and psychological								of the chosen lecture
stress. Genetic and epigenetic control.								subtopic. Debate.
13. Genetic and lifestyle factors leading to	1		2	1		4	4	Analysis of scientific
metabolic syndrome and obesity. The influence of	1		2	1		4	4	literature. Presentation
genetic factors on energy uptake, consumption and								of the chosen lecture
body composition. Importance of genetic research								subtopic. Case
in the prevention of overweight and obesity.								analysis.
14. Application of gene therapy methods in	1		2	1		4	4	Analysis of scientific
	1		Z	L T		4	4	
rehabilitation. Gene therapy and other uses of								literature. Presentation
molecular genetic techniques for therapy. Studies								of the chosen lecture
of model organisms in solving health care								subtopic. Case
problems.			-				-	analysis.
15. Problems of biomedical ethics in human	1		2	1		4	4	Presentation of the
genome research.								chosen lecture
								subtopic. Debate.
Total	22		28	14		64	69	
				l			I	

Assessment strategy	Weight	Deadline	Assessment criteria
	%		

		D 1 1	
Assessment of seminars: written essay and its	15	During the semester	At the beginning of the semester, the student must choose one sub-topic of the lecture and present it in the seminar, prepare
presentation.		semester	a written essay and an oral presentation using visual aids. The
presentation.			volume of the essay must be at least 10 pages; essays (.doc,
			.docx, or .pdf format) must be submitted two days before
			seminar. The presentation must be submitted together with
			the visual material (the duration of the presentation is 1
			academic hour). During the assessment of the seminars (essay
			and its presentation) it is possible to collect 15% of the final
			grade - a maximum of 1.5 points in the ten-point grading
			system.
Practice exercises: solution	5	At the end	During the assessment of the practice exercise, it is possible
and reporting of exercise		of the	to collect 5% of the final grade - a maximum of 0.5 points in
tasks		semester	the ten-point grading system.
			At each colloquium, 20% can be collected of the final
2 colloquia	40	During the	assessment - a maximum of 2 points in the ten-point grading
		semester	system. The colloquium questionnaire consists of 10 tasks,
			open-ended and closed-ended questions, each with a value of
			0.2 points. If the student scores less than half of the possible colloquium score, the colloquium is considered unsuccessful
			and the student is required to retake the colloquium. The
			colloquium can be retake only once. Retraining of the
			colloquium yields 70% of the maximum colloquium
			estimate. Failure to pass the colloquiums may not be taken
			the exam.
			40% of the final grade can be collected during the exam - a
Exam	40	Session	maximum of 4 points in the ten-point grading system. The
			exam task consists of four open-ended (problematic) written
			questions, each with a value of 1 point. Maximum possible
			rating 4. The exam can be taken only after passing the
			colloquia, completing the parts of the seminars (essay and
			presenting the sub-topic of the lecture) and the practice
			exercises.

Author	Publishing year	Title	Issue of a periodical or volume of a publication; pages	Publishing house or internet site
		Required read	ing	
Henning W.	2014	Molecular exercise physiology	1	Routledge
Korf BR, Irons MB.	2013	Human genetics and genomics	1	Wiley-Blackwell, A John Wiley & Sons, Ltd.
Barh D., Ahmetov I.	2019	Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions.	1	e-book: https://www.elsevier.com/ books/sports-exercise-and- nutritional- genomics/barh/978-0-12- 816193-7
Giusti P.	2019	SECTION V Nutrigenetics, pharmacogenetics and metabolomics in sport and exercise.		DOI: <u>10.13140/RG.2.2.14</u> <u>497.15203</u>
		Recommended re	ading	·
Posthumus M, Collins M.	2016	Genetics and Sports	1	Med Sport Sci. Basel, Karger (DOI: 10.1159/000445240)
Roth S.M.	2007	Genetics Primer for Exercise Science and Health	1	Human kinetics
Malzer D., et al.	2019	The genetics of human ageing		DOI: <u>10.1038/s41576-</u> <u>019-0183-6</u>

Pagiatakis C., et al.	2021	Epigenetics of aging and disease: a brief overview	https://doi.org/10.1007/s40 520-019-01430-0
Morris B.J., et al.	2019	Genetic and epigenetic regulation of human aging and longevity	https://doi.org/10.1016/j.b badis.2018.08.039
Figueiredo V.C., et al.	2020	Genetic and Epigenetic Regulation of Skeletal Muscle Ribosome Biogenesis with Exercise.	https://www.biorxiv.org/c ontent/10.1101/2020.12.14 .422642v1.full
Maciejewska-Skrendo A., et al.	2020	Genetics of Muscle Stiffness, Muscle Elasticity and Explosive Strength.	DOI: <u>https://doi.org/10.24</u> <u>78/hukin-2020-0027</u>
Pickering C. and Kiely J.	2017	Understanding Personalized Training Responses: Can Genetic Assessment Help?	https://opensportssciencesj ournal.com/contents/volu mes/V10/TOSSJ-10- 191/TOSSJ-10-191.pdf DOI:10.2174/1875399X01 710010191