

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
ORGANIC OPTOELECTRONICS	

Lecturer(s)	Department(s) where the course unit (module) is delivered				
Coordinator:	Physics Department, Institute of Applied Research				
Prof. Saulius Juršėnas	Saulėtekio al. 3, Vilnius				
Other(s):					

Study cycle	Type of the course unit (module)					
First						

Mode of delivery	Period when the course unit	Language(s) of instruction
	(module) is delivered	
Lectures, seminars, laboratory work	Spring sem.	English

Requirements for students							
Prerequisites:	Additional requirements (if any):						
Basic knowledge on physics and mathematics on the level	Basic chemistry course						
of the first cycles of physics or engineering studies							

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	140	64	76

Purpose of the course unit (module): programme competences to be developed

Soft organic materials replace conventional semiconductors in electronics and photonics technologies. Organic optoelectronic devices market is one of the fastest growing. The course will provide the basic knowledge of physical processes in organic materials and of organic optoelectronic device technologies. Course will provide with practical skills of formation of simple organic devices and will enable better adaptation to new coming organic semiconductor devices products and technologies. Course will provide with information on the recent trends in organic optoelectronic device markets.

Learning outcomes of the course unit (module)	Teaching and learning methods	Assessment methods
Students will acquire general basic knowledge of organic optoelectronic materials and physical processes in them. (1.1)	Lectures with visual demonstrations	Midterm (open questions)
Students will acquire a basic knowledge of organic electronics and photonics devices, their production technology and operating principles. Students will acquire knowledge on organic optoelectronic devices application areas and device market developments. (1.3, 3.4)	Lectures with visual demonstrations. Seminars.	Exam (open questions, answers in a written form) Assessment of seminar presentations
Practical skills of formation and testing of organic optoelectronic devices: OLEDs, OTFTs, OPV, photoreceptors, organic lasers, organic nonlinear optical layers, and organic sensors. (2.1, 2.2, 2.3, 3.1,3.2, 4.2)	Laboratory work, self-study.	Assessment for practical work.

Learn to analyse the scientific literature in the field of organic optoelectronics. (1.2, 2.2)	Self-study. Analysis of the latest achievements in organic optoelectronics technologies. Open discussion.	Assessment of presentation and discussion.

	Contact hours						Self	-study work: time and assignments	
Content: breakdown of the topics	-ectures	Futorials	Seminars	Exercises	-aboratory work	Internship/work olacement	Contact hours	Self-study hours	Assignments
1. Basic knowledge of physical			0)						Prepare for midterm
processes in organic electroactive materials									
1.1 Introduction. Soft materials- a new generation of high-technology materials. Organic electroactive and photonic materials. Other related compounds. Organic molecular crystals, Amorphous Molecular films, Polymer films. Products and Market forecast. Electronic states of a molecule. Atomic orbitals of carbon. Molecular orbitals.									
1.2 Basics on Molecular electronic states . Electronic absorption. Fluorescence and Phosphorescence, Delayed fluorescence. Molecular solvation processes. Molecular complexes. Energy transfer processes in molecular systems.	10						10	10	
1.3 Basics on exciton states in molecular solids.Frenkel excitons, Charge-transfer excitons. Exciton energy transfer. Exciton vibronic interaction.Exciton recombination processes.									
1.4 Basics on charge carrier states in organic solids. Charge carrier mobility in organic solids: organic crystals, disordered organic films. Charge carrier photogeneration and recombination processes.									
1.5 Basic concepts of Electronic processes in conjugated polymers. Soliton, polaron bipolaron exciton. Excited state dynamics in conjugated polymer films.									
2. Basic concepts of organic	14		6	6			26	28	Presentations on hot topics of organic

optoelectronic device technologies							optoelectronic
2.1 Organic layer deposition technologies. Self-							research (one 20 min. presentation on
assembled monolayers. Organic heterojunctions.							designated topics)
Organic multilayer device fabrication technologies.							
2.2 Organic field effect transistors: materials,							
basic structures, principles of operation. Organic							
circuits. Printed organic electronics.							
2.3 Organic light emitting devices: materials, basic							
structures, principles of operation. Polymer light							
emitting diodes. Organic lasers. Organic light							
emitting transistors. Organic displays and general							
lighting devices: basic structures, principles of							
operation, market forecast.							
2.4 Organic photonic devices, fabrication							
technologies and operation principles. Organic							
nonlinear optical materials and devices.							
2.5 Organic photoreceptors: materials, device							
structures, principles of operation. Xerox, laser							
printers, structures, principles of operation,							
markets. Organic photodiodes.							
2.6 Organic photovoltaic devices, materials, basic							
structures, principles of operation. OPVC markets.							
2.7 Organic Thermoelectric Power Devices:							
materials and principles of operation.							
2.8 Organic sensor systems. Water soluble							
chemical and biological sensors. Photoluminescent							
chemical and biological sensors. Organic transistor							
based sensors. Organic gas sensors. Lab-on-a-Chip							
devices with organic semiconductor based							
detection. Market forecast.							
Laboratory words Desired and the second							Literature analysis,
Laboratory work. Projects on relevant organic electronics and photonics devices: OLED, OTFT,							introduction into experimental
OPV, photoreceptors, organic laser, organic							methods,
nonlinear optical layer, organic sensor,		2	2	24	28	38	experimentation and
preparation of device layout.							analysis of the
							results, preparation of the report and
							presentation.
Total	24	8	8	24	64	76	

Assessment strategy	Weigh t,%	Deadline	Assessment criteria
Midterm. Performance method: answers in a	20	Middle of the Semester	Mastered basic knowledge, %

written form. (open questions)								
Seminar presentation	20	Semester, at Evaluation of presentation: novelty, completenes the scheduled presentation time						
Project report and presentation	30	End of Semester	Evaluation of the report and presentation of the Project quality of experimentation, interpretation of the results, presentation					
Exam. Performance method: answers in a written form. (open questions)	30	Exam session	Mastered course knowledge, %					
Author	Year of public	Title		lssue of a periodical or volume of	Publishing place and house or web link			
Compulsary reading	ation			a publication				
A.Kohler and H.Bassler	2015	Electronic Pro Organic Semicono	cesses in luctors		Weinheim, Germany, Wiley- VCH			
Ed.: W.Hu	2013	Organic Optoelec			Weinheim, Germany, Wiley- VCH			
M.Pope, C.E.Svenberg	1999	Electronic Pro Organic Crystals	cesses in		N.Y.: Oxford Univ. Press			
W.Tress	2014	Organic Solar Ce	ells	V.208	Heidelberg, Springer			
B.D.Malhotra					Shawbury: RAPRA Technology LTD			
D.A.Bernards,	2008	Organic Semico	nductors in	V. 107	Heidelberg, Springer			
R.M.Owens.		Sensor Applicati	ons					
G.G.Malliaras eds.								
Optional reading								
Ed. W.Brutting, Ch.Adachi	2012	Physics of Semiconductors	Organic		Weinheim, Germany, Wiley- VCH			
Ron Mertens	2016	The OLED Handbo	ook		Ron Mertens			