

## COURSE UNIT (MODULE) DESCRIPTION

| Course unit (module) title           | Code |
|--------------------------------------|------|
| Quantitative fluorescence microscopy |      |

| Lecturer (s)                                                                                             | Department (s)                                                     |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|--|--|--|
| Coordinator: dr. Marijonas Tutkus<br>Lab. supervisors: doc. Aurimas Kopūstas and dr. Marijonas<br>Tutkus | Department of Neurobiology and Biophysics, Life Sciences<br>Centre |  |  |  |  |  |  |  |

| Cycle                                      | Level of the course unit | Type of the course unit |
|--------------------------------------------|--------------------------|-------------------------|
| 1 <sup>st</sup> stage (Bachelor's studies) | -                        | Facultative             |

| Mode of delivery    | Period of delivered | Language(s) of instruction |  |  |  |
|---------------------|---------------------|----------------------------|--|--|--|
| Lectures/laboratory | Autumn semester     | Lithuanian/English         |  |  |  |

| Prerequisites and corequisites                                                                                              |                        |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|--|--|--|--|
| <b>Prerequisites:</b>                                                                                                       | Corequisites (if any): |  |  |  |  |  |  |  |
| For undergraduate students in Biology, Chemistry, Physics, Nanoengineering, Health and Medical Sciences, and Life Sciences. | -                      |  |  |  |  |  |  |  |

| Number of credits allocated to the course unit (module) | Total student's<br>workload | Contact hours | Self-directed learning<br>hours |
|---------------------------------------------------------|-----------------------------|---------------|---------------------------------|
| 5                                                       | 130                         | 48            | 82                              |

## Purpose of the course unit (module): programme competencies to be developed

- The general objective of the course is to provide practical skills for the analysis of biological samples by fluorescence microscopy and to perform the analysis/processing of recorded data to obtain quantitative information on the behavior of biological molecules in cells and artificial systems.
- Upon completion of the course, students will acquire the following knowledge:
- Basic knowledge of optical and fluorescence microscopy,
- Fundamental knowledge required to extract quantitative information from microscopic data
- Basic knowledge of data processing and analysis.
- Upon completion of the course, students will acquire the following skills:

- How to perform classical microscopy experiments
- How to perform fluorescence measurements at the level of single molecules

|                   |                                                                                                                                                                                                                                                                                                                                   |                                                                                                   |                          |                      |                         |                                     |                                                                | -                            |                                                                                      |                                          |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------|----------------------|-------------------------|-------------------------------------|----------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------|------------------------------------------|--|
|                   | Learning outcomes of the course unit (module)                                                                                                                                                                                                                                                                                     | Teacl                                                                                             | hing a                   | nd le                | arnin                   | g met                               | hods                                                           |                              |                                                                                      | Assessment                               |  |
| To<br>of a<br>san | provide basic and advanced knowledge of imaging<br>quantitative fluorescence microscopy of biological<br>pples and processing and analysis of recorded data.                                                                                                                                                                      | Lectures, The first part of the exam: a ter<br>Self-directed learning. from the theoretical part. |                          |                      |                         |                                     |                                                                |                              |                                                                                      | art of the exam: a test neoretical part. |  |
|                   | <ol> <li>To learn the methods of fluorescence microscopy<br/>data processing and analysis applicable to samples<br/>from the cellular level to individual molecules.</li> <li>Learn how to properly record data using fluores-<br/>cence microscopes and sample preparation meth-<br/>ods for fluorescence microscopy.</li> </ol> | Laboratory works,<br>seminars,<br>Self-directed learning.                                         |                          |                      |                         |                                     |                                                                |                              | The second part of the exam: eval-<br>uation of lab report and its oral de-<br>fense |                                          |  |
|                   |                                                                                                                                                                                                                                                                                                                                   |                                                                                                   |                          | Con                  | tact h                  | ours                                |                                                                |                              | Self                                                                                 | f-study work: time and assignments       |  |
|                   | Content: breakdown of the topics                                                                                                                                                                                                                                                                                                  | Lec<br>tur<br>es                                                                                  | Tu-<br>to-<br>ri-<br>als | Se<br>mi<br>nar<br>s | Ex-<br>er-<br>cis<br>es | La-<br>bor<br>ato<br>ry<br>wo<br>rk | In-<br>ter<br>nsh<br>ip/<br>wo<br>rk<br>pla<br>ce-<br>me<br>nt | Co<br>nta<br>ct<br>ho<br>urs | Sel<br>f-<br>stu<br>dy<br>ho<br>urs                                                  | Assignments                              |  |
| 1.                | Microscope optical circuit, conjugated planes, dif-<br>fraction and imaging, resolution and digital aperture,<br>contrast techniques.                                                                                                                                                                                             | 2                                                                                                 |                          |                      |                         |                                     |                                                                | 2                            | 4                                                                                    | Reading the literature<br>on the topic   |  |
| 2.                | Molecular fluorescence, dyes, filters and dichroic<br>mirrors, excitation sources, point spread function<br>(PSF), diffraction limit.                                                                                                                                                                                             | 2                                                                                                 |                          |                      |                         |                                     |                                                                | 2                            | 4                                                                                    | Reading the literature<br>on the topic   |  |
| 3.                | Microscope types, an overview of methods, wide-<br>field, confocal, total internal reflection (TIRF), su-<br>per-resolution microscopes.                                                                                                                                                                                          | 2                                                                                                 |                          |                      |                         |                                     |                                                                | 2                            | 4                                                                                    | Reading the literature<br>on the topic   |  |
| 4.                | Introduction to TIRF microscopy and practical exer-<br>cises using TIRF: critical angle, evolutionary field,<br>polarization. Oxygen removal, triplet quenching.                                                                                                                                                                  | 2                                                                                                 |                          |                      |                         |                                     |                                                                | 2                            | 4                                                                                    | Reading the literature<br>on the topic   |  |
| 5.                | Continuation of TIRF microscopy: superresolution (STORM, PALM), introduction to image recording - cameras (CCD) and Avalanche photodiodes (APD).                                                                                                                                                                                  | 2                                                                                                 |                          |                      |                         |                                     |                                                                | 2                            | 4                                                                                    | Reading the literature<br>on the topic   |  |

| 6.  | Introduction to confocal microscopy and practical<br>exercises using this method: sectioning, pinhole, la-<br>ser scanning, and rotating disk microscope schemes.                                                    | 2 |   |   | 2 | 4 | Reading the literature<br>on the topic |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|----------------------------------------|
| 7.  | Introduction to dyes for monitoring molecular inter-<br>actions: dye selection, FRET, fluorescence quench-<br>ing, filter selection.                                                                                 | 2 |   |   | 2 | 4 | Reading the literature on the topic    |
| 8.  | Introduction to the practical sessions: DNA and pro-<br>tein interactions (types of DNA restriction enzymes,<br>monitoring of interactions using FRET of single<br>molecules).                                       | 2 |   |   | 2 | 4 | Reading the literature on the topic    |
| 9.  | Introduction to practical classes: research of trans-<br>membrane proteins in liposomes (introduction to<br>transmembrane proteins, light-absorbing complexes<br>in LHCII liposomes and research of their function). | 2 |   |   | 2 | 5 | Reading the literature<br>on the topic |
| 10. | Practical classes: sample preparation, oxygen re-<br>moval, immobilization of test objects on surfaces.                                                                                                              |   |   | 3 | 3 | 5 | Reading the literature on the topic    |
| 11. | Practical classes: acquaintance with TIRF and con-<br>focal microscopes, their management, the most im-<br>portant details.                                                                                          |   |   | 3 | 3 | 5 | Reading the literature on the topic    |
| 12. | Quantitative microscopy using a confocal micro-<br>scope: Measurement of protein density in cells.                                                                                                                   |   |   | 3 | 3 |   | Reading the literature on the topic    |
| 13. | Quantitative microscopy using the TIRF micro-<br>scope: In vitro measurements of DNA and restriction<br>enzyme interactions at the level of single molecules.                                                        |   |   | 3 | 3 |   | Reading the literature on the topic    |
| 14. | Quantitative microscopy using a confocal micro-<br>scope: in vitro measurement of protein density.                                                                                                                   |   |   | 3 | 3 |   | Reading the literature on the topic    |
| 15. | Data analysis: introduction to the extraction of quan-<br>titative information from microscopic images<br>(thresholding, background detection, and dot over-<br>lap).                                                | 2 |   |   | 2 | 5 | Reading the literature on the topic    |
| 16. | Data analysis: extraction of quantitative information<br>from microscopic images (intensity integration, de-<br>tection of intensity change points).                                                                 | 2 |   |   | 2 | 5 | Reading the literature on the topic    |
| 17. | Practical classes: analysis of recorded data (cells).                                                                                                                                                                |   | 3 |   | 3 | 5 | Reading the literature on the topic    |
| 18. | Practical classes: analysis of recorded data (DNA re-<br>striction).                                                                                                                                                 |   | 3 |   | 3 | 5 | Reading the literature on the topic    |
| 19. | Practical classes: analysis of recorded data (of LHCII liposomes).                                                                                                                                                   |   | 3 |   | 3 | 5 | Reading the literature on the topic    |
| 21. | Independent study and preparation for the presenta-<br>tion of the description of laboratory work.                                                                                                                   |   |   |   |   | 5 | Reading the literature<br>on the topic |
| 22. | Independent study and preparation for the presenta-<br>tion of the description of laboratory work.                                                                                                                   |   |   |   |   | 5 | Reading the literature on the topic    |

| 23. Presentation of the description of laboratory works and oral presentations. |  | 2 |  | 2 | Reading the literature on the topic |
|---------------------------------------------------------------------------------|--|---|--|---|-------------------------------------|
| Total                                                                           |  |   |  |   |                                     |

| Assessment<br>strategy                                                       | Weigh<br>t,<br>% | Assessment<br>period            | Assessment criteria                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------|------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Implementation of laboratory<br>works, lab report and oral<br>presentations. | 70 %             | During the semester             | A student is allowed to take an exam if laboratory and practical work has<br>been completed and at least 50% of the possible points have been obtained<br>in the oral and written presentation of their lab report. The performance<br>of laboratory work is evaluated with 3 points. The maximum evaluation<br>of the laboratory report is 2 points. The maximum grade for oral presen-<br>tations is also 2 points. |
| Exam                                                                         | 30%              | During the<br>exam ses-<br>sion | 20 question test. The correct answer to one question is evaluated with 0.15 points.<br>Final evaluation: the sum of the evaluations received for all test questions + evaluation of the performance of laboratory work + evaluation of the lab report + evaluation of oral presentations.                                                                                                                             |

| Author                                                                            | Year<br>of<br>pub-<br>lica-<br>tion | Title                                                                    | Issue of a<br>periodical<br>or volume<br>of a publi-<br>cation | Publishing place and<br>house or weblink                  |
|-----------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------|
| Compulsory reading                                                                |                                     |                                                                          |                                                                |                                                           |
| David A. Roas, Constanti-<br>nos Pitris, Nimmi Ramanu-<br>jam.                    | 2011                                | Handbook of biomedical optics                                            |                                                                | CRC Press                                                 |
| Partha Pratim Mondal, Al-<br>berto Diaspro.                                       | 2014                                | Fundamentals of Fluorescence<br>Microscopy: Exploring Life<br>with Light |                                                                | Springer                                                  |
| Spencer L. Shorte, Friedrich<br>Frischknecht                                      | 2007                                | Imaging Cellular and Molecu-<br>lar Biological Functions                 | ISBN-13: 978-<br>3-540-71330-2                                 | Springer-Verlag Berlin Heidelberg                         |
| R. Rotomskis, E. Žurauskas,<br>E. Žurauskienė, S. Bagdo-<br>nas, V. Žalgevičienė. | 2008                                | Fluorescencinis vaizdinimas<br>biomedicinoje                             |                                                                | VU Onkologijos institutas, VĮ Mok-<br>slotyros institutas |
| Optional reading                                                                  |                                     |                                                                          |                                                                |                                                           |
| Joseph R. Lakowicz.                                                               | 2007                                | Principles of Fluorescence<br>Spectroscopy                               |                                                                | Springer Science & Business Media.                        |
| Bruce Alberts, Alexander Johnson, Julian Lewis, Mar-                              | 2007                                | Molecular Biology of the Cell                                            |                                                                | Garland Science                                           |

| tin Raff, Keith Roberts, Pe-<br>ter Walter. |      |                                                    |            |
|---------------------------------------------|------|----------------------------------------------------|------------|
| Paul R. Selvin, Taekjip Ha                  | 2008 | Single-molecule Techniques:<br>A Laboratory Manual | CSHL Press |