Course unit (module) title	Code
Proteomics	

Lecturer(s)	Department(s) where the course unit (module) is delivered
Coordinator: Mindaugas Valius, Prof., PhD	Life science Centre, Sauletekio al. 7, Vilnius LT10257
Other(s):	

Study cycle	Type of the course unit (module)
Second cycle	Compulsory

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Face-to-face, self-study	3 rd semester	English
Lectures, seminars and practice		

Requirements for students					
Prerequisites:	Additional requirements (if any):				

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	131	60	71

Purpose of the course unit (module): programme competences to be developed

This course will focus on latest advances in proteome science including cutting-edge proteomic approaches and technologies. Students will acquire the basic and novel methods of sample preparation to proteomic analysis, top-down and bottom-up quantitative label-based and label-free differential proteomics, identification of post-translational modification and subcellular proteome analysis. Major emphasis will be given on proteomic application in basic science of cell biology and clinical research. Student will gain new knowledge in the field of proteome science and will learn how to apply it addressing practical issues of basic and applied science.

Learning outcomes of the course unit (module)	Teaching and learning	Assessment methods
	methods	
2.1. Be able select an appropriate modelling strategy	Lectures, debates, group	
for a given biological domain and problem	discussion, journal club	
2.2. Be able to gather and analyse information on	Lectures, debates, group	
subjects related to proteomics with a critical	discussion, journal club	
approach, and to carry out a technological watch		
3.1 Be able to apply modern research methods in	Lectures, debates, group	Two presentations; Written
proteomics	discussion	examination
4.1. Design proteomic experiment to solve practical	Debates, group discussion s	
issues in basic and applied life science.		
5.1 Be able to work autonomously and as a part of a	Lectures, debates, group	
multidisciplinary team; act honestly and according	discussion	
to ethical obligations		

		Contact hours					Self-	Self-study work: time and assignments	
Content: breakdown of the topics		Tutorials	Seminars	Exercises	Laboratory work	Internship/work	Contact hours	Self-study hours	Assignments
1. Introduction to Proteomics	2						2	3	Hon-Chiu Eastwood Leung: latest reviews
2. Proteome and its complexity levels	4		6				10	10	Hon-Chiu Eastwood Leung; latest reviews
3. Mass spectrometry and its application in high capacity in quantitative proteomics	6		12				18	20	Hon-Chiu Eastwood Leung; latest reviews
4. Sample preparation for proteomic analysis	2		6				8	10	Hon-Chiu Eastwood Leung; latest reviews
5. OMICs database and their use for bioinformatics data analysis	2		8				10	12	Hon-Chiu Eastwood Leung; latest reviews; IPA data analysis tool
6. Proteomics in biomedical research	2		6				8	10	Hon-Chiu Eastwood Leung; latest reviews
7. Recent advances in proteomic science	2		2				4	6	Hon-Chiu Eastwood Leung; latest reviews
Total	20		40				60	71	

Assessment strategy	Weight,	Deadline	Assessment criteria		
	%				
Presentation I	15%	After topic 3	Understanding of subject and ability to apply knowledge to solve		
			real problems, total 15 points		
Presentation II	15%	At the end of	Understanding of subject and ability to apply knowledge to solve		
		the course	real problems, total 15 points		
Exam	70%	3 working	Understanding of subject and ability to apply knowledge to solve		
		days after last	real problems, total 70 points		
		lecture or			
		seminar			

Author	Year of publi catio n	Title	Issue of a periodical or volume of a publication	Publishing place and house or web link
Compulsary reading				
Editor Hon-Chiu Eastwood Leung	2012	Integrative proteomics		InTech, ISBN 978-953-51- 0070-6
Nature Reviews	2000- prese nt	NATURE REVIEWS CANCER; NATURE REVIEWS MOLECULAR CELL BIOLOGY; NATURE REVIEWS CLINICAL ONCOLOGY; NATURE REVIEWS DRUG DISCOVERY	ISSN: 1474- 175X; ISSN: 1471-0072; ISSN: 1759- 4774; ISSN: 1474-1776	http://www.nature.com/review s/index.html
Optional reading				

John T. Hancock	2010	Cell Signalling (3rd edition)	ISBN-13: 978-	OXFORDUNIVERSITY
			0199232109	PRESS