

## COURSE UNIT DESCRIPTION

|                                                     | Code        |                                  |                                   |                                                |                                     |                          |  |  |  |  |
|-----------------------------------------------------|-------------|----------------------------------|-----------------------------------|------------------------------------------------|-------------------------------------|--------------------------|--|--|--|--|
| Numeric                                             | al Method   | ds for Differe                   | ential I                          | Equations                                      |                                     | <u>MM110NM</u>           |  |  |  |  |
|                                                     |             |                                  |                                   |                                                |                                     |                          |  |  |  |  |
| Lectur                                              | where the   | ere the course unit is delivered |                                   |                                                |                                     |                          |  |  |  |  |
| Coordinator: prof. dr. Štik                         | onienė Olş  | ga                               |                                   | Faculty of Mathematics and Informatics         |                                     |                          |  |  |  |  |
|                                                     |             |                                  |                                   | Naugarduko St. 24, LT-03225 Vilnius, Lithuania |                                     |                          |  |  |  |  |
| Other(s):                                           |             |                                  |                                   |                                                |                                     |                          |  |  |  |  |
|                                                     |             |                                  |                                   |                                                |                                     |                          |  |  |  |  |
| Study                                               | y cycle     |                                  | Type of the course unit           |                                                |                                     |                          |  |  |  |  |
| sec                                                 | ond         |                                  |                                   |                                                | Opt                                 | ional                    |  |  |  |  |
| Mada of dolivour                                    |             | Damiad                           | whon t                            | he course unit is                              |                                     |                          |  |  |  |  |
| whole of derivery                                   |             | renou                            | doli                              | vered                                          | La                                  | inguage(s) of mstruction |  |  |  |  |
| face-to-face                                        |             | 1 st                             | vear                              | semester 1                                     |                                     | I ithuanian English      |  |  |  |  |
| lact-to-lact                                        |             | <b>1</b>                         | ycar,                             | semester 1                                     |                                     |                          |  |  |  |  |
|                                                     |             | Requi                            | remen                             | ts for students                                |                                     |                          |  |  |  |  |
| Prerequisites:                                      |             |                                  | Additional requirements (if any): |                                                |                                     |                          |  |  |  |  |
| none                                                |             |                                  |                                   | none                                           |                                     |                          |  |  |  |  |
|                                                     |             |                                  |                                   |                                                |                                     |                          |  |  |  |  |
| Course volume in credits                            | Total st    | student's workload Contact hours |                                   |                                                |                                     | Self-study hours         |  |  |  |  |
| 5                                                   |             | 130                              | 32                                |                                                |                                     | 98                       |  |  |  |  |
|                                                     |             |                                  |                                   |                                                |                                     |                          |  |  |  |  |
| Purp                                                | ose of the  | course unit:                     | progra                            | amme competences                               | to be deve                          | loped                    |  |  |  |  |
| The aim of the course is incre                      | ase knowle  | edge of mathe                    | ematica                           | al theory and methods                          | related to                          | theory of evolutionary   |  |  |  |  |
| differential equations and nur                      | the course  | unods of its se                  | Jution.                           | aching and loamin                              | A gaagement methods                 |                          |  |  |  |  |
| Learning outcomes of the course unit                |             |                                  |                                   | methods                                        | B                                   | Assessment methods       |  |  |  |  |
| Understand the concepts and                         | f theory of |                                  | methous                           |                                                |                                     |                          |  |  |  |  |
| evolutionary differential equations and numerical   |             |                                  |                                   |                                                |                                     |                          |  |  |  |  |
| methods of its solution                             |             |                                  |                                   |                                                | Tests (written),<br>Exam (written), |                          |  |  |  |  |
| formulate (verbally or in text) ideas, propositions |             |                                  |                                   |                                                |                                     |                          |  |  |  |  |
| and proofs of numerical methods for evolutionary    |             |                                  |                                   | ture, Individual reading                       |                                     |                          |  |  |  |  |
| differential equations using the appropriate        |             |                                  |                                   | minars, solving mode                           |                                     |                          |  |  |  |  |
| language.                                           | 11 1        |                                  | pr                                | oblems with compute                            | Presentation at seminars            |                          |  |  |  |  |
| solve mathematical problems using techniques        |             |                                  |                                   |                                                |                                     |                          |  |  |  |  |
| from numerical methods for evolutionary             |             |                                  |                                   |                                                |                                     |                          |  |  |  |  |
| differential equations                              |             |                                  |                                   |                                                |                                     |                          |  |  |  |  |

|                                                       | Contact hours |           |          |           |                 |                 |               | Self-study work: time and assignments |                        |
|-------------------------------------------------------|---------------|-----------|----------|-----------|-----------------|-----------------|---------------|---------------------------------------|------------------------|
| Content: breakdown of the topics                      |               | Tutorials | Seminars | Exercises | Laboratory work | Internship/work | Contact hours | Self-study hours                      | Assignments            |
| 1. Introduction. Evolutionary differential equations. |               |           |          |           |                 |                 |               |                                       | Studying and problem   |
| Initial and boundary conditions. Advection-diffusion  |               |           |          |           |                 |                 | 2             | 8                                     | solving [Ascher §1],   |
| equation. Wave number and amplitude. Taylor's         |               |           |          |           |                 |                 |               |                                       | preparing for seminars |

| theorem. Matrix norms and eigenvalues. Function                                                                                                                                             |    |   |   |  |    |    |                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|---|--|----|----|--------------------------------------------------------------------------|
| 2. Well-Posed Initial Value Problems. Simple model cases. Initial-boundary value problems. Stability ideas.                                                                                 | 2  |   | 1 |  | 3  | 8  | Studying and problem<br>solving [Ascher §1],<br>preparing for seminars   |
| 3. Methods for ODEs. Multistep Methods. Runge–<br>Kutta Methods. Convergence and 0-stability. Error<br>Control and Estimation. Stability of ODE Methods.<br>Stiffness. Boundary Value ODEs. | 2  |   | 1 |  | 3  | 8  | Studying and problem<br>solving [Ascher §2],<br>preparing for seminars   |
| 4. Finite Difference and Finite Volume Methods.<br>Order, stability, and convergence                                                                                                        | 2  |   | 1 |  | 3  | 8  | Studying and problem<br>solving [Ascher §3],<br>preparing for seminars   |
| 5. Spectral Stability. Fourier Analysis. Eigenvalue<br>Analysis. Nonlinear Stability and Energy Methods.                                                                                    | 2  |   | 1 |  | 3  | 8  | Studying and problem<br>solving [Ascher §4-5],<br>preparing for seminars |
| 6. Hamiltonian Systems. Splitting methods.<br>Variational methods.                                                                                                                          | 2  |   | 1 |  | 3  | 8  | Studying and problem<br>solving [Ascher §6],<br>preparing for seminars   |
| 7. Dispersion and Dissipation. The Wave Equation.<br>The KdV Equation. Spectral Methods. Lagrangian<br>methods.                                                                             | 2  |   | 1 |  | 3  | 8  | Studying and problem<br>solving [Ascher §7],<br>preparing for seminars   |
| 8. Parabolic Problems. Hyperbolic Problems.                                                                                                                                                 | 2  |   |   |  | 2  | 8  | Studying and problem<br>solving [Ascher §8],<br>preparing for seminars   |
| 9. Splitting Methods. Implicit methods for parabolic equations . Alternating direction implicit methods . Nonlinear problems.                                                               | 2  |   |   |  | 2  | 8  | Studying and problem<br>solving [Ascher §9],<br>preparing for seminars   |
| 10. Discontinuities. Godunov's scheme. Higher<br>Order Schemes for Scalar Conservation Laws.                                                                                                | 2  |   |   |  | 2  | 8  | Studying and problem<br>solving [Ascher §10],<br>preparing for seminars  |
| 11. Nonuniform Meshes                                                                                                                                                                       | 2  |   |   |  | 2  | 8  | Studying and problem<br>solving [Ascher §11],<br>preparing for seminars  |
| Exam (written)                                                                                                                                                                              |    | 4 |   |  | 4  | 10 | Preparation for examination                                              |
| Total                                                                                                                                                                                       | 22 | 4 | 6 |  | 32 | 98 |                                                                          |

| Assessment strategy      | Weigh | Deadline   | Assessment criteria                                                |
|--------------------------|-------|------------|--------------------------------------------------------------------|
|                          | t,%   |            |                                                                    |
| Presentation in seminars | 40    | During the | During a seminar a student (or a small group of students)          |
|                          |       | semester   | presents certain topic (selected by a lecturer and self-studied by |
|                          |       |            | a student) from the theory of partial differential equations,      |
|                          |       |            | answers audience questions. Ability to understand the issue, to    |
|                          |       |            | present it consistently and clearly is assessed.                   |
| Exam (written)           | 60    |            | Theoretical questions are set in the exam.                         |
|                          |       |            | All questions are worth the same number of points.                 |
|                          |       | End of     | Maximal number of points is given if the student answered the      |
|                          |       | semester   | question: the student has given correct definitions, has given     |
|                          |       |            | correct statements and their proofs. Some points are given for     |
|                          |       |            | partial answers.                                                   |

| Author             | Year<br>of<br>public<br>ation | Title                                                           | Issue of a<br>periodical<br>or volume of<br>a publication | Publishing place and house<br>or web link |
|--------------------|-------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|
| Compulsary reading |                               |                                                                 |                                                           |                                           |
| Uri M. Ascher      | 2008                          | Numerical Methods for<br>Evolutionary Differential<br>Equations |                                                           | SIAM                                      |

| Optional reading |      |                               |                   |
|------------------|------|-------------------------------|-------------------|
| R.Čiegis         | 2003 | Diferencialinių lygčių        | Vilnius: Technika |
|                  |      | skaitiniai sprendimo metodai. |                   |