

### **COURSE UNIT DESCRIPTION**

| Course unit title     | Course unit code |
|-----------------------|------------------|
| Computer Architecture |                  |

| Lecturer(s)                             | Department where the course unit is delivered |  |  |
|-----------------------------------------|-----------------------------------------------|--|--|
| Coordinator: prof. dr. Saulius Gražulis | Department of Computer Science                |  |  |
| Other lecturers: -                      | Faculty of Mathematics and Informatics        |  |  |
|                                         | Vilnius University                            |  |  |

| Cycle                | Type of the course unit |  |
|----------------------|-------------------------|--|
| 1 <sup>st</sup> (BA) | Compulsory              |  |

| Mode of delivery    | Semester or period when the course unit is delivered | Language of instruction |
|---------------------|------------------------------------------------------|-------------------------|
| Face-to-face/online | 3 semester                                           | Lithuanian, English     |

| Prerequisites    |
|------------------|
| Prerequisites: - |

| Number of credits allocated | Student's workload | Contact hours | Individual work |
|-----------------------------|--------------------|---------------|-----------------|
| 5                           | 134                | 66            | 68              |

### Purpose of the course unit: programme competences to be developed

## **Purpose of the course unit:**

to shape understanding of the real processing of computer programs as iterative transformation of memory data state using computer's instructions, to understand computer hardware implementation principles, to master the system of machine level notions, to learn read and write machine level software.

## Generic competences:

- Ability to analyse and organise the information (*GK1*).
- Ability to apply the knowledge in practice (*GK*2).
- Ability to organise and plan the work, to work in a team as well as individually (GK3).

# Specific competences:

- Programming (SK6).
- Systems architecture (*SK7*).

| I coming outcomes of the                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning outcomes of the course unit: students will be able to | Teaching and learning methods                                                                                                                                                                                                                                                                                                                                                                                                                                 | Assessment methods                                                                                                                                                                                                                                                     |
| concepts and notions fluently and focused                      | <ul> <li>Teaching methods:</li> <li>Lectures;</li> <li>Laboratory works.</li> <li>Learning methods:</li> <li>Actual knowledge gathering and accumulation;</li> <li>Knowledge synthesis – generalization, abstraction and aggregation of actual knowledge;</li> <li>Knowledge analysis – new knowledge matching with aggregated knowledge, their verification and correction is needed;</li> <li>Application of aggregated and validated knowledge.</li> </ul> | Examination. Laboratory works presentation. Report. Quiz. Criteria:  • Ability to solve practical exercises;  • Ability to develop, debug, trace, explain and modify programs in assembler;  • Ability to explain operation principles of computer and CPU components; |

|                                                                                                                                         | Contact hours |           |          |          | Indi            | vidual work: time and |               |                 |                         |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|----------|----------|-----------------|-----------------------|---------------|-----------------|-------------------------|
|                                                                                                                                         |               |           |          |          |                 |                       |               | assignments     |                         |
| Course content: breakdown of the topics                                                                                                 |               | Tutorials | Seminars | Practice | Laboratory work | Practical training    | Contact hours | Individual work | Assignments             |
| 1. Introduction to Computer Architecture. Basic                                                                                         | 2             |           |          |          | 2               |                       | 4             | 4               | I, II. Investigating    |
| Computer structure. Switching circuits.                                                                                                 |               |           |          |          |                 |                       | -             |                 | logic circuits and      |
| 2. Logic gates and combinational logic. Complete                                                                                        | 2             |           |          |          | 2               |                       | 4             | 4               | computer components     |
| sets of logic functions, Post's theorem.                                                                                                |               |           |          |          |                 |                       | -             | •               | on transistor and logic |
| 3. Computer arithmetic. Positional systems and                                                                                          | 2             |           |          |          | 2               |                       | 4             | 4               | level (using Logisim or |
| number representation.                                                                                                                  |               |           |          |          |                 |                       | -             | -               | similar simulation      |
| 4. Stateful computer elements. Triggers and regis-                                                                                      | 2             |           |          |          | 2               |                       | 4             | 4               | software);              |
| ters. Memory.                                                                                                                           |               |           |          |          |                 |                       |               |                 | III, IV. Writing        |
| 5. The CPU data tract and its control. Finite state                                                                                     | 2             |           |          |          | 2               |                       | 4             | 4               | programs in assembly    |
| automata. Microprogramming.                                                                                                             |               |           |          |          |                 |                       |               | _               | language for various    |
| 6. Data representation in computers. Alternative in-                                                                                    | 2             |           |          |          | 6               |                       | 4             | 4               | architectures and       |
| teger and rational number representations. Charac-                                                                                      |               |           |          |          |                 |                       |               |                 | investigating their     |
| ter data and character encodings. Unicode.                                                                                              |               |           |          |          |                 |                       |               |                 | execution on            |
| 7. Floating point numbers.                                                                                                              | 2             |           |          |          | 2               |                       | 4             | 4               | simulation software.    |
| 8. Representation of variable size data. Advanced                                                                                       | 2             |           |          |          | 2               |                       | 4             | 4               |                         |
| representations of numbers. Multiple precision                                                                                          |               |           |          |          |                 |                       | -             | -               |                         |
| arithmetic. Examples of CISC and RISC                                                                                                   |               |           |          |          |                 |                       |               |                 |                         |
| commands for number and character processing.                                                                                           |               |           |          |          |                 |                       |               |                 |                         |
| 9. Example of a CPU implementation. CPU control                                                                                         | 2             |           |          |          | 2               |                       | 4             | 4               | 1                       |
| sequencer. Pipelines. Various types of computer architectures (Stack, Accumulator, Memory-Memory, Load-Store), CISC vs RISC. Zero, One, |               |           |          |          |                 |                       |               |                 |                         |
| Two, Three address instructions.                                                                                                        |               |           |          |          |                 |                       |               |                 |                         |
| 10. RISC-V ISA                                                                                                                          | 2             |           |          |          | 2               |                       | 4             | 4               |                         |
| 11. Assembler programming. Command                                                                                                      | 2             |           |          |          | 2               |                       | 4             | 4               | -                       |
| mnemonics, operands, addressing modes, labels, sections, macroassembler. Compilation from high level languages (C).                     | 2             |           |          |          | 2               |                       | 4             | 4               |                         |
| 12. Pipelined architectures. Memory cache. RISC-V emulator. Examples and analysis.                                                      | 2             |           |          |          | 2               |                       | 4             | 4               |                         |
| 13. CISC CPUs. x86 architecture example.                                                                                                | 2             |           |          |          | 2               |                       | 4             | 4               | † <b> </b>              |
| 14. Virtual memory. Paging. Segmenting. Memory                                                                                          | 2             |           |          |          | 2               |                       | 4             | 4               | - I                     |
| protection.                                                                                                                             | <b> </b>      |           |          |          | ~               |                       | _             | 7               |                         |
| 15. Microcontrollers. Example: AVR. Interrupts                                                                                          | 2             |           |          |          | 2               |                       | 4             | 4               |                         |
| and interrupt handling. Peripheral devices: timers, ADC.                                                                                |               |           |          |          |                 |                       |               |                 |                         |
| 16. Future, exotic, non-standard architectures:                                                                                         | 2             |           |          |          | 2               |                       | 4             | 4               |                         |
| ANN, tagged architectures, cell matrix, FPGA, FORTH machines. Hardware description                                                      |               |           |          |          |                 |                       |               |                 |                         |
| languages.                                                                                                                              |               |           |          |          |                 |                       |               |                 | <u> </u>                |
| Self-preparation and exam                                                                                                               |               |           |          |          |                 |                       | 2             | 4               |                         |
| Total                                                                                                                                   | 32            |           |          |          | 32              |                       | 66            | 68              |                         |

| Assessment strategy | Weigh | Deadline        | Assessment criteria                                 |
|---------------------|-------|-----------------|-----------------------------------------------------|
|                     | t %   |                 |                                                     |
| Lecture quizzes     | 10    | 10 min. at the  | 4-question quiz covering several recent lectures    |
|                     |       | beginning of    | (Blooms 1 an 2 level questions) using an electronic |
|                     |       | each practical. | teaching environment (Moodle, Open edX or similar). |

| Intermediate quiz                                           | 15  | mid-term                                                 | approx. 30-question quiz covering several recent lectures ( <u>Blooms</u> 1 to 9 level questions) using an electronic teaching environment (Moodle, Open edX or similar).                                                                                                             |
|-------------------------------------------------------------|-----|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Evaluation of practical assignments                         | 50  | After each practical according to the announced schedule | The results of an assigned practical exercise (Logisim or equivalent projects, assembler programs, HLL (e.g. C) programs) are uploaded to the VU Virtual Learning Environment (https://emokymai.vu.lt/) and are defended orally if the teaching professor so requires.                |
| Oral and written report on<br>the performed<br>computations | 10  | end of term                                              | Students provide a written (2 page) report on the performed practical work and 5 min oral presentation with slides.                                                                                                                                                                   |
| Final exam                                                  | 15  | end of term                                              | approx. 30-question quiz covering several recent lectures ( <u>Blooms</u> 1 to 9 level questions) using an electronic teaching environment (Moodle, Open edX or similar).                                                                                                             |
| Total                                                       | 100 |                                                          | The final mark is obtained summing up all points obtained for each task, quiz or assignment, dividing them by 100 and rounding using the math number rounding rules (.5 rounds to the larger integer). The maximum possible points add up to at least 1000, but to no more than 1300. |

| Author                     | Publis | Title                        | Number or        | Publisher or URL                  |
|----------------------------|--------|------------------------------|------------------|-----------------------------------|
| 1144141                    | hing   |                              | volume           | 2 40000101 01 0112                |
|                            | year   |                              |                  |                                   |
| Required reading           |        |                              |                  |                                   |
| Andrew S.Tanenbaum         | 2005   | Structured computer          |                  | Prentice Hall PTR, Fifth Edition  |
|                            |        | organization                 |                  |                                   |
| D. A. Patterson and J. L.  | 2017   | Computer Organization and    |                  | Elsevier                          |
| Hennessy                   |        | Design: The Hardware/        |                  |                                   |
|                            |        | Software Interface. RISC-V   |                  |                                   |
|                            |        | edition.                     |                  |                                   |
| A. Waterman, Y. Lee, D.    | 2011   | The RISC-V instruction set   | Vol. 1, ver. 1.0 | https://inst.eecs.berkeley.edu/~c |
| Patterson, and K. Asanović |        | manual. Volume I: base user- |                  | s250/fa11/handouts/riscv-         |
|                            |        | level ISA. Version 1.0.      |                  | spec.pdf                          |
| Recommended reading        |        |                              |                  |                                   |
| Antanas Mitašiūnas         | 2016   | Computer architecture.       |                  | Vilnius, 126 p.                   |
|                            |        | Teaching book (in Lithuanian |                  | http://www.mif.vu.lt/katedros/cs  |
|                            |        | Kompiuterių architektūra)    |                  | /Asmen/Kompiuteriu%20archit       |
|                            |        |                              |                  | <u>ektura.pdf</u>                 |
| D. E. Knuth                | 2005   | MMIX – A RISC Computer       | Vol. 1, Fasc. 1  | Addison–Wesley,                   |
|                            |        | for the New Millennium       |                  | http://www.mmix.cs.hm.edu/do      |
|                            |        |                              |                  | c/fasc1.pdf, https://www-cs-      |
|                            |        |                              |                  | faculty.stanford.edu/~knuth/fasc  |
|                            |        |                              |                  | 1.ps.gz                           |
| C. W. Kann                 | 2016   | Implementing a One Address   |                  | Gettysburg College;               |
|                            |        | CPU in Logisim               |                  | https://open.umn.edu/opentextb    |
|                            |        |                              |                  | ooks/textbooks/implementing-a-    |
|                            |        |                              |                  | one-address-cpu-in-logisim        |
| C. W. Kann                 | 2019   | Digital Circuit Projects: An | Second           | Gettysburg College;               |
|                            |        | Overview of Digital Circuits | Edition          | http://cupola.gettysburg.edu/oer  |
|                            |        | Through Implementing         |                  | /1                                |
| C W W                      | 2010   | Integrated Circuits          |                  | 0 1 0 .!!                         |
| C. W. Kann                 | 2019   | Introduction To MIPS         |                  | Gettysburg College;               |
|                            |        | Assembly Language            |                  | https://cupola.gettysburg.edu/oe  |
| M T M 1 177 5              | 1000   | Programming                  |                  | r/2                               |
| M. J. Murdocca and V. P.   | 1999   | Principles of Computer       |                  | Prentice Hall                     |
| Heuring                    |        | Architecture                 |                  |                                   |

| D. A. Patterson and J. L.<br>Hennessy | 2013 | Computer Organization and Design: The Hardware/Software Interface. MIPS edition. |             | Elsevier                                                                                                                                                                                                                                                                                                |
|---------------------------------------|------|----------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E. Upton                              | 2016 | Learning Computer Architecture with Raspberry Pi                                 |             | John Wiley & Sons                                                                                                                                                                                                                                                                                       |
| A. P. Malvino and J. A.<br>Brown      | 1999 | Digital Computer Electronics                                                     |             | McGraw-Hill                                                                                                                                                                                                                                                                                             |
| R. E. Bryant and D. R. O'Hallaron     | 2001 | Computer Systems: A Programmer's Perspective                                     | 3rd Edition | https://github.com/smellslikeke<br>enspirit/an-askreddit-list-of-<br>compsci-<br>books/blob/master/Randal%20E<br>.%20Bryant%2C%20David%20<br>R.%20O%E2%80%99Hallaron<br>%20-%20Computer%20System<br>s.%20A%20Programmer%E2%<br>80%99s%20Perspective%20%5<br>B3rd%20ed.%5D%20(2016%2<br>C%20Pearson).pdf |
| D. Goldberg                           | 1991 | What every computer scientist should know about floating-point arithmetic        |             | https://doi.org/10.1145/103162.<br>103163                                                                                                                                                                                                                                                               |
| J. L. Gustafson                       | 2015 | The End of Error: Unum Computing                                                 |             | CRC Press                                                                                                                                                                                                                                                                                               |