COURSE UNIT DESCRIPTION

Course unit title	Course unit code
PARALLEL PROGRAMMING TECHNIQUES AND ADVANCED	
CALCULATIONS	

Lecturer (s)	Department where course unit is delivered				
dr. Mantas Vaitonis	Kaunas Faculty Institute of Social Sciences and Applied Informatics				

Cycle	Level of course unit	Type of the course unit
First	1/1	Mandatory

Mode of delivery	Semester or period when the course unit is delivered	Language of instruction
Lectures, online lectures, practices	spring semester	Lithuanian/English

Requirements for the student						
Prerequisites:	Requisites:					

Number of ECTS credits allocated	Student's workload	Contact work hours	Individual work hours
5	130	52	78

Aim of the subject: competencies to be developed in the study program

The objective of the course is to acquire knowledge and skills in the application of science and technology in to high-performance and parallel computing technologies, as well as modern software and technical equipment used in various fields from artificial intelligence to data engineering.

-qpone uses in the same as a surface and the same and									
Learning outcomes of course unit	Teaching and learning methods	Assessment methods							
Analyzation and preparation of digital data for parallel computing, determine their reliability, and normalize them. Selection of software and technical tools for an effective solution of parallel computing tasks, for scientific research, and in computer engineering. Evaluation of the need, potential applications, and effectiveness of solving tasks using parallel computing principles	teaching / learning methods (network configuration,	Case study, control works, practical works, exam							

	Contact work hours							Individual work hours and tasks		
Course content: breakdown of the topics	Lectures	Consultations	Seminars	Practice classes	Laboratory	Practice	All contact work	Individual work	Tasks	
The architecture of high-performance computing computer systems. Structure and detailed explanation of the CPU. Introduction to MATLAB software.	2)	<u> </u>	4	I	<u>н</u>	6	4	Literature, cases study, discussions, practical tasks	
Parallel computing using high-performance computers. Comparison of CPU, GPU, and FPGA technologies. Operations with vectors and matrices.	2			4			6	5	Literature, cases study, discussions, practical tasks	
Algorithm and its complexity. Introduction to the concept of the algorithm and principles for evaluating its complexity. Sequential and parallel algorithms. Principles of algorithm execution using single and multiple processors. Processing of big data and multidimensional matrices.	2			4			6	5	Literature, cases study, discussions, practical tasks	
Evaluation of parallel computing performance, analysis of computing performance. Operations with multi-dimensional matrices.	2			4			6		Literature, cases study, discussions, practical tasks	
Shared-memory high-performance computing and algorithms. Shared-memory computing systems of computers, principles of use. Application areas of parallel computing (science, medicine, artificial intelligence, finance, electronics modeling, etc.). Parallel computing functions using MATLAB software.	2			4			6	10	Literature, cases study, discussions, practical tasks	
Distributed-memory high-performance computing. Shared-memory computing systems of computers, principles of use. Parallel computing for computer/network risk assessment.	2			4			6	10	Literature, cases study, discussions, practical tasks	
Distributed systems models, architecture, and applications. The complexity of distributed systems is analyzed. Processing big data using parallel computing.	2			4			6	10	Literature, cases study, discussions, practical tasks	

High-performance computing and parallel computing in cyber security. Algorithmic and high-frequency risk detection.	2		4		6	12	Literature, cases study, discussions, practical tasks
Exam preparation, consultation		2			2	12	
Exam					2		
Total	16	2	32		52	78	

Assessment strategy	Perce ntage	Date of examinati	Assessment criteria
		on	
Control work (C1) from theory	10 %	Scheduled time	Evaluated on a scale of 1-10 grades: 10-9: Excellent knowledge and skills. Assessment level. 90-100 % correct answers. 8-7: Good knowledge and skills, there may be minor mistakes. Level of synthesis. 70-89% correct answers. 6-5: Average knowledge and skills, there are mistakes. Analyzes level. 50-69% correct answers. 4-3: Knowledge and skills are below average, there are (essential) errors. Level of knowledge application. 20-49% correct answers. 2-1: Minimum requirements not met. 0-19% correct answers.
Practical work (P1)	20 %	Scheduled time	Evaluated on a scale of 1-10 grades: 10-9: Excellent knowledge and skills. Assessment level. 90-100 % correct answers. 8-7: Good knowledge and skills, there may be minor mistakes. Level of synthesis. 70-89% correct answers. 6-5: Average knowledge and skills, there are mistakes. Analyzes level. 50-69% correct answers. 4-3: Knowledge and skills are below average, there are (essential) errors. Level of knowledge application. 20-49% correct answers. 2-1: Minimum requirements not met. 0-19% correct answers.
Practical work (P2)	20 %	Scheduled time	Evaluated on a scale of 1-10 grades: 10-9: Excellent knowledge and skills. Assessment level. 90-100 % correct answers. 8-7: Good knowledge and skills, there may be minor mistakes. Level of synthesis. 70-89% correct answers. 6-5: Average knowledge and skills, there are mistakes. Analyzes level. 50-69% correct answers. 4-3: Knowledge and skills are below average, there are (essential) errors. Level of knowledge application. 20-49% correct answers. 2-1: Minimum requirements not met. 0-19% correct answers.

Exam (E1)	50 %	Scheduled	Students have to prepare individual project based on
		time	course material. Only if they fail this project, they can
			take exam on scheduled time which would cover the
			whole course material.
			Evaluated on a scale of 1-10 grades:
			10-9: Excellent knowledge and skills. Assessment level.
			90-100 % correct answers.
			8-7: Good knowledge and skills, there may be minor
			mistakes. Level of synthesis. 70-89% correct answers.
			6-5: Average knowledge and skills, there are mistakes.
			Analyzes level. 50-69% correct answers.
			4-3: Knowledge and skills are below average, there are
			(essential) errors. Level of knowledge application. 20-
			49% correct answers.
			2-1: Minimum requirements not met. 0-19% correct
			answers.
Final grade: 0.1*C1+0.2*I	P1+0.2*I	P2+0.5*E1	

Author	Year	Title	Number of periodical publication or publication Volume	The place of publication and publisher or online link
Required reading				
Hiroaki Kitano and James A. Hendler Nikolaos Plosk and	1995 2016	Massively Parallel Artificial Intelligence GPU Programming in		MIT Press, Cambridge, MA Elsevier
Nikolaos Samara	2010	MATLAB		Lisevici
Roman Trobec and et. al.	2018	Introduction to Parallel Computing: From Algorithms to Programming on State-of- the-Art Platforms		Springer
Antoine Savine and Leif Andersen	2018	Modern Computational Finance: AAD and Parallel Simulations		Wiley
Yurij Holovatch	2018	Order, Disorder and Criticality		World Scientific
Recommended reading		·		
Duane Storti, Mete Yurtoglu	2015	CUDA for Engineers: An Introduction to High- Performance Parallel Computing		Addison-Wesley Professional
The MathWork	2019	Machine Learning and Big Data in Quantitative Investing		The MathWorks
M Vaitonis	2020	High Frequency Computerized Trading Strategies Engineering in Financial Markets		Vilnius University