

COURSE UNIT DESCRIPTION

Course unit title	Course unit code
Distributed Systems	DIST7134

Lecturer(s)	Department where the course unit is
	delivered
Coordinator: assoc. prof. Karolis Petrauskas	Department of Software Engineering,
Other lecturers: -	Institute of Compute Science,
	Vilnius University

Cycle	Level of course unit	Type of the course unit
Second	-	Elective

Mode of delivery	Semester or period when the course unit is delivered	Language of instruction
Face-to-face	Fall semester, second year of study	Lithuanian, English

Prerequisites and corequisites								
Prerequisites: "Software Engineering Models and Corequisites (if any): -								
Methods" or "Modelling and Verification of Software-								
based Systems".								

Number of ECTS credits allocated	Student's workload	Contact hours	Self-study hours
5	135	52	83

Purpose of the course unit: programme competences to be developed									
To deepen knowledge in design of distributed systems, core algorithms and abstractions in this field, to develop skills to									
reason about algorithms formally, implement them t	reason about algorithms formally, implement them taking verification into consideration.								
Learning outcomes of the course unit:	Teaching and learning	Assessment methods							
students will be able to	methods	Assessment methous							
Design a distributed system by applying core									
abstractions and algorithms in this field.									
Formalize a design of a distributed system,	Lectures problem-oriented	Laboratory works and							
formally define specific properties and verify	teaching case studies	presentation of their results							
them.	information retrieval literary	written exam (open semi-open							
Analyze scientific papers in the field of	reading individual work	and close-ended questions and							
distributed systems, understand their	tutorials laboratory work	tasks)							
contribution in the context of core knowledge.	tutoriais, laboratory work.	tusks).							
Develop fault tolerant systems in Erlang/OTP or									
Elixir platforms.									

			Con	tact h	ours			Self-study work: time and assignments		
Course content: breakdown of the topics	Lectures	Tutorials	Seminars	Practice	Laboratory work	Practical training	Contact hours	Self-study hours	Assignments	
1. Introduction, definition of a distributed system, fault modes, main theoretical results (FLP, CAP).	2						2	2	Self-study of literature.	
2. Developing parallel and distributed systems with Erlang/	2				4		6	10	1 st laboratory work: create a simple distributed system (e.g. chat NTP etc.)	

OTP.								with Erlang/OTP or Elixir, prepare automated distributed tests, a formal specification for it, present results in a class. Self-study of literature.		
3. Basic proof techniques, formal specifications and proofs using TLA ⁺ .	2					2	6	Self-study of literature.		
4. Communication abstractions: atomic broadcast, read-write registers, distributed state machines. Their proofs.	4					9 18 ⁶			9	2 nd laboratory work: to develop an application using communication abstractions, distributed clocks, transactions or fault detectors. Prepare
5. Clocks in a distributed system, partial and causal order.	2			6				automated distributed tests, a formal specification, define its properties		
6. Agreement. Distributed transactions, mutual exclusion, deadlock detection.	4						9	formally and present results in a class. Self-study of literature.		
7. Fault tolerance: fault detectors, voting.	2						6			
8. Fault tolerance: replication (View-stamped replication, Paxos and its variants, Raft and other).	6						13	3 rd laboratory work: to develop an application involving fault tolerance and replication. Prepare automated distributed tests, a formal specification,		
9. Fault tolerance: data types (CRDT, MRDT, monotonic data types and other).	2			6 16	6	6 16	16		define its properties formally, prove one of those properties and present results in a class.	
10. Fault tolerance: byzantine faults.	2						4	Self-study of literature.		
11. Architecture of distributed databases (Dynamo, Bigtable and other).	2					2	4	Self-study of literature.		
12. Review and analysis of the current research in the topic of distributed systems.	2					2	4	Self-study of literature.		
13. Preparing for the exam and taking the final exam (written)						4	4	Self-study of literature. Consultation before exam -2 hours, exam -2 hours.		
Total	32			16		52	83			

Assessment strategy	Weight,%	Deadline	Assessment criteria
1 st laboratory work	15	4 th week of the	The assessment of the laboratory works. For each fully completed
		semester	and timely defended laboratory work, 1 point (of 10) is awarded.
2 nd laboratory work	15	9 th week of the	If the work is done partially, in poor quality or late, the points are
		semester	reduced. Lateness no more than 2 weeks leads to reducing the
3 rd laboratory work	20	15 th week of	assessment in 25%, lateness no more than 4 weeks – 50%, later –
		the semester	75%.
Exam (written)	50	Exam session	Exam consists of open, semi-open and close-ended questions
			from the topics covered in lectures. The exam is allowed only
			when all the laboratory works are completed and defended for at
			least 5 points (of 10, not considering reduction for lateness). At
			least 50% of the exam points must be collected to pass the exam.

Author	Year	Title	Number or	Publisher or URL
			volume	
Required reading				
Sunil Kumar	2017	Distributed Systems: Design		Alpha Science Intl Ltd.
		Concepts		ISBN: 978-1-84265-933-5
Michael Raynal	2018	Fault-Tolerant Message-		Springer Nature Switzerland AG.
-		Passing Distributed Systems		ISBN: 978-3-319-94140-0
		An Algorithmic Approach		
Francesco Cesarini, Steve	2016	Designing for Scalability with		O'Reilly Media Inc.
Vinoski		Erlang/OTP: Implement		ISBN: 978-1449320737

		Robust, Fault-Tolerant Systems						
Recommended reading								
Mikito Takada	-	Distributed Systems for Fun		Online:				
		and Profit		http://book.mixu.net/distsys/				
Daniel J. Velleman	2006	How To Prove It: A Structured		Cambridge University Press.				
		Approach, Second Edition		ISBN: 978-0-512-67599-4				
Leslie Lamport	2003	Specifying Systems: The		Addison-Wesley, Pearson				
_		TLA+ Language and Tools for		Education Inc., Online:				
		Hardware and Software		https://lamport.azurewebsites.net/t				
		Engineers	<u>la/book-02-08-08.pdf</u> ,					
				ISBN: 0-321-14306-X				
David Gries, Fred B.	1993	A Logical Approach to		Springer-Verlag New York, Inc.				
Schneider		Discrete Math		ISBN: 0-387-94155-0				
Fred Hebert	2013	Learn You Some Erlang for		No Starch Press. Online:				
		Great Good!		https://learnyousomeerlang.com/,				
				ISBN: 978-1-593-27435-1				