

COURSE UNIT (MODULE) DESCRIPTION

Course unit (module) title	Code
Data mining	

Lecturer(s)	Department(s) where the course unit (module) is delivered
Coordinator: dr. Jurgita Markevičiūtė	Department of Statistical Analysis
_	Institute of Applied Mathematics
Other(s):	Faculty of Mathematics and Informatics
	Naugardukas st., 24

Study cycle	Type of the course unit (module)		
Second	Compulsory		

Mode of delivery	Period when the course unit (module) is delivered	Language(s) of instruction
Face-to- face	First (autumn) semester	English/Lithuanian

Requirements for students					
Prerequisites:	Additional requirements (if any):				
	Parametric and nonparametric statistics or econometrics				
	Multivariate statistics				

Course (module) volume in credits	Total student's workload	Contact hours	Self-study hours
5	150	42	108

Purpose of the course unit (module): programme competences to be developed

The main goal of the course is a) to learn to find and analyse empirical data from various sources; b) to define the process of developing a model in a way that one can understand c) to create and evaluate appropriate models and use best methods in a situation, evaluate adequacy of the results. Enhance critical and analytic thinking.

Competences

- creatively solve nonstandard theoretical and empirical problems (B1)
- critically analyze and correctly apply the results presented in the scientific literature (B2)
- concisely and clearly present the results of the analysis (B3.4)
- to combine knowledge of statistics, economics, mathematics and other sciences for solving practical problems (B4.2)
- to know the static and dynamic models and methods of analysis: a) in the time and frequency domain; b) in a continuous and a discrete time (D5.1)
- to understand the underlying probabilistic laws and statistical principles used for the stochastic models (D5.2)
- an understanding of empirical adequacy testing principles of economic and statistical models and can apply them in practice (D8.1)
- knows various model adequacy tests for the identification of potential problems (D8.2)
- to create and supervise statistical and / or economic models (D9.1)
- to create and supervise machine learning algorithms (D9.2)
- prepare raw empirical data for the econometric analysis and professionally operate the econometric software (D10)

Learning outcomes of the course unit (module)	Teaching and learning methods	Assessment methods
• To prepare training set data for further analysis.	Lectures, labs, case studies.	Individual project, exam.
To quantify measure of model prediction performance.	Lectures, labs, case studies.	Individual project, exam.

•	To build and analyse linear regression, partial		
	least squares and penalized models.		
•	To build and use nonlinear regression models		
	using neural networks, multivariate adaptive		
	regression spline, and support vector machine		
	and k-nearest neighbours.		
•	To build and understand regression trees and		
	rule-based models.		
•	To build and understand linear classification	Lectures, labs, case studies.	Individual project, exam.
	models.		
•	To build and understand nonlinear classification		
	models.		
•	To build and understand classification trees.		
•	To make suitable conclusions, interpretation of	Lectures, labs, case studies.	Individual project, exam.
	the model.		
•	To understand and explain the pitfalls related to		
	the modelling techniques and big data.		

Content: breakdown of the topics		Contact hours						Self-study work: time and assignments	
		Tutorials	Seminars	Exercises	Laboratory work	Internship/work	Contact hours	Self-study hours	Assignments
1. Introduction. Prediction Versus Interpretation. Key Ingredients of Predictive Models. Terminology	2				4		6	18	[1] ch. 1.4 analyse the examples
2. General strategies. Data pre-processing. Over fitting and model tuning.	4				8		12	30	[1] ch. 3 and 4, exercises, p. 58-59 and 89-92
3. Regression models. Linear and nonlinear regression. Regression trees.	4				8		12	30	[1] ch. 6, 7 and 8, exercises, p. 137-139, 168-171, 218-220.
4. Classification models. Linear and nonlinear classification. Classification trees.	4				8		12	30	[1] ch. 12, 13 and 14 exercises, p. 326-328, 366-367, 411-413.
Total	14				28		42	108	

Assessment strategy	Weigh t,%	Deadline	Assessment criteria
Individual project	60%	During semester	Students are evaluated according projects originality, compliance to subject methods and goal, project quality and presentation of the project and/or its parts on time.
Exam	40%	June	A test 30 questions. Each question is worth of one point.

Author	Year	Title	Issue of a	Publishing place and house
	of		periodical	or web link
	public		or volume of a	
	ation		publication	
Compulsary reading				
[1] Max Kuhn and Kjell	2013	Applied Predictive Modeling		Springer Science+Business
Johnson				Media New York
Optional reading				
	2015	Documentation of R package		https://cran.r-
Max Kuhn and Kjell		AppliedPredictiveModeling		project.org/web/packages/Appl

Johnson			iedPredictiveModeling/AppliedPredictiveModeling.pdf
	2016	Documentation of R package	http://topepo.github.io/caret/in
Max Kuhn		carret	dex.html