COURSE UNIT DESCRIPTION - | Course unit title | Code | |---|------| | Molecular mechanisms of aging and rejuvenation technologies | | | Lecturer(s) | Department(s) | | | | | | |--|---|--|--|--|--|--| | Coordinator: Prof. dr. Vytautė Starkuvienė-Erfle | Faculty of Natural Sciences, Vilnius University, Life | | | | | | | Others: | Sciences Center, Vilnius. | | | | | | | Lectures and seminars: | | | | | | | | Prof. dr. Vytautė Starkuvienė (lectures – 28h., seminars | | | | | | | | -16h. | | | | | | | | Prof dr. Aurelija Žvirblienė (lectures – 2h.) | | | | | | | | Prof. dr. Gintautas Tamulaitis (lectures – 2h.) | | | | | | | | Prof. Dr. Artūras Petronis (lectures -2h) | | | | | | | | Dr. Urtė Nėniškytė (lectures – 2h) | | | | | | | | Mode of delivery | Period of delivered | Language(s) of instruction | |-------------------------|----------------------------------|----------------------------| | in person and via teams | 2 st semester, spring | Lithuanian, English | | Prerequisites and corequisities | | | | | | |---|-------------------------|--|--|--|--| | Prerequisites: | Corequisities (if any): | | | | | | Biochemistry, genetics, molecular and cell biology, | | | | | | | biotechnology | | | | | | | Number of credits allocated to the course unit | Student's total
workload | Contact h | ours | Self-study and research hours | |--|-----------------------------|-----------|------|-------------------------------| | 5 | 135 | Lectures | 36 | 83 | | | | Seminars | 16 | | ## Purpose of the course unit: programme competences to be developed Upon the successful completion of this course, students will acquire: Subject-specific competences: - Knowledge of molecular mechanisms leading to aging - Molecular and evolutionary theories of aging - Major strategies of rejuvenation on molecular and cellular levels - Aging biomarkers ## General competences: - Systematic and critical study of the selected topic - Combine knowledge of different disciplines to tackle down complex relationships - To present a complex topic and/or contradicting ideas in a concise way | Learning outcomes of the course unit | Teaching and learning methods | Assessment methods | | | | | |---|---|--|--|--|--|--| | After successful completion of this course a student should be able to know: | | | | | | | | the theories of aging the major cellular and organismal model systems that are used for aging research the major mechanisms that are responsible for aging processes aging markers, to explain their function; and understand the methods for the estimation of biological age know approaches of rejuvenation, their strengths | Lectures, seminars,
preparation of the seminars
via working in groups, self-
study | 1) 50% of the grade:
seminars on the selected
course topic
2) 50% of the grade: a
written exam | | | | | | and limitations, potential risks | | | | | | | | Content: breakdown of the topics | Contact hours | | | | S | | Self-study work: time and assignments | | | |---|---------------|-----------|----------|-----------|-----------------|-----------------|---------------------------------------|------------------|---| | | Lectures | Tutorials | Seminars | Exercises | Laboratory work | Internship/work | Contact hours | Self-study hours | Assignments | | I. Theory | | | | | | | | | | | 1. Introduction to aging research | 4.5 | | 2 | | | | 6.5 | 15 | | | Aging, its socio-economic impact and technological milestones in increasing the life-span | 0.5 | | | | | | | 2 | Analysis of the topic-related scientific papers and material presented by teacher | | Metrics of human population aging | 0.5 | | | | | | | 2 | self-directed learning, seminar | | Evolution theories of aging and longevity | 1 | | | | | | | 4 | presentations | | Model organisms of aging research | 2 | | | | | | | 4 | | | Molecular theories of aging – an | 0.5 | | | | | | | 3 | | | overview | 0.5 | | | | | | | 3 | | | 2. Molecular mechanisms of aging | 26 | | 12 | | | | 38 | 57 | | | and corresponding rejuvenation strategies | | | | | | | | | | | Senescence and senolytics | 2.5 | | | | | | | 6 | | | Aging of nuclear envelope | 0.5 | | | | | | | 2 | | | Telomeres and aging | 1 | | | | | | | 3 | | | Aging of DNA | 0.5 | | | | | | | 3 | | | Genome remodelling | 2 | | | | | | | 5 | Analysis of the topic-related | | Gene editing for anti-aging | 2 | | | | | | | 5 | scientific papers and material | | Protein folding, aggregation, | 1 | | | | | | | 4 | presented by teacher self-directed learning, | | degradation and autophagy in aging Mitochondrial homeostasis and | 1 | | | | | | | 4 | seminar presentations | | oxidative damage | 1 | | | | | | | + | semmar presentations | | Nutrient sensing and metabolic | 5 | | | | | | | 8 | | | control | | | | | | | | ~ | | | Drugs for rejuvenation | 1 | | | | | | | | | | Aging of immune system | 2 | | | | | | | 5 | | | Stem cell aging | 1 | | | | | | | 2 | | | Aging of cell interaction to the environment | 1.5 | | | | | | | 3 | | | Gut microbiome in aging | 1 | Н | | | | | | 2 | | | Circadian rhythms in aging | 2 | | | | | | | 2 | | | Aging of CNS | 2 | | | | | | | 3 | | | 3. Aging biomarkers | 3 | | 2 | | | | 5 | 7 | | | Aging biomarkers and their detection methods | 3 | | | | | | | 7 | Analysis of the topic-related scientific papers and material presented by teacher self-directed learning, seminar presentations | | 4. Healthy aging | 2 | | | | | | 2 | 4 | | | Centenarians | 1.5 | | | | | | | 3 | | | Anti-aging social trends | 0.5 | | | | | | | 1 | | | | 35.5 | | 16 | | | | 51.5 | 83 | | | Assessment strategy Weight, Assessment period Period | Assessment criteria | |--|---------------------| |--|---------------------| | Seminar | 50 | After every seminar | Presentations the selected topic in a form of the seminar. The quality of the presentation, the sources of information and active discussion during the seminars and lectures will be evaluated | |---------|-----|---|---| | Exam | 50 | Exam session Exam is allowed when the seminars are completed | Open questions in a written or oral exam 2-4 (insufficient) 5 (sufficient) 6 (satisfactory) 7 (highly satisfactory) 8 (good) 9 (very good) 10 (excellent) | | Total | 100 | | The final grade is the sum of all evaluated parts, accordingly weighted | | Author | Year of publica-tion | Title Publish or web | | place and house | | | | |--|----------------------|--|--------|------------------------|--|--|--| | Compulsory reading | | | | | | | | | Reviews and research papers covering the course topics in the following journals: Nature, Science, Cell, Nature Reviews Molecular Cell Biology, Nature Ageing, Nature Medicine, Current Opinions in Cell Biology, Journal of Gerontology, Aging Cell, Aging Research Reviews, Experimental Gerontology Several examples are provided below: | | | | | | | | | Cohn et al | 2023 | The hererogeneity of cell senescence: insights on the single cell level | | Trends in Cell Biology | | | | | Scott et al | 2022 | The economic value of tar aging | geting | Nature Aging | | | | | Vaiserman et al | 2021 | Telomere Length as a Marker of
Biological Age: State-of-the-Art,
Open Issues, and Future
Perspectives | | Frontiers Genetics | | | |