

COURSE UNIT DESCRIPTION

Course unit title	Course unit code		
Fundamentals of Category Theory		KKPS3124	
Lecturer(s)	Department where the	course unit is delivered	
Coordinator: Ramūnas Garunkštis	stis Faculty of Mathematics and I		
	Department of Probability Th	eory and Number Theory	
	Naugarduko St. 24		
	LT-03225 Vilnius		
	Lithuania		

Cycle	Level of course unit	Type of the course unit
1 st (BA)	1 out of 1	Compulsory

Mode of delivery	Semester or period when the course	Language of instruction
	unit is delivered	
face-to-face	Second year of study	English
	Spring semester	

Prerequisites and corequisites				
Prerequisites:	Corequisites (if any):			
Calculus	-			

Number of ECTS credits	Student's workload	Number of contact work	Number of stand-alone
allocated		hours	working hours
5	130	48	82

		-							
D		of the	00111000 11	 mmo amo mamo o	000000	tomaga	40	he develo	and
PIII	DOSE	ог ппе	course u	ргоуганние	COILD	-lences	10	De develo	bea
				 Programme			••	~~~~~~	

Not very long ago (1926) David Hilbert said "No one shall expel us from the paradise which Cantor has created for us". This is about the powerful Set Theory, which we all use in our everyday mathematics. Fundamental terms of the set theory language are "element" and "function", "element" being the more fundamental of the two, while "function" can be understand as a certain construction of the elements (subset of Cartesian product). The world does not stand still. With Category Theory (CT) we can forget "elements" and construct everything from "functions" (arrows, in the category language). CT proposes a new impressive view to mathematics, rather different from Set Theory. The paradigm of CT described by neatlab.org: "As opposed to set theory, category theory focuses not on elements [of sets] x,y,… – called objects – but on the relations between these objects: the (homo)morphisms between them f : x->y." "Category theory takes a bird's eye view of mathematics. From high in the sky, details become invisible, but we can spot patterns that were impossible to detect from ground level." would be a felicitous phrase from the Introduction of "Basic Category Theory" by Tom Leister (University of Edinburg). From other side there is an academic discipline Applied Category Theory in which methods from category theory are used to study other fields including but not limited to computer science, physics, control theory, natural language processing, probability theory and causality (see wiki, Applied category theory). The purpose of this course is to introduce the basic concepts of Category Theory.

Learning outcomes of the course unit: students will be able to	Teaching and learning methods	Assessment methods
The student abstract thinking ability will be	Lecture. Practice. Individual	Tests (written). Exam (written).
developed. The students will learn to employ	reading.	
mathematical reasoning, that is, to proceed from		
assumptions to conclusions following the patterns		
of logical inference, to present mathematical		
statements, their proofs, problems, and their		
solutions for others.		
Define and illustrate main concepts related to	Lecture. Practice. Individual	Tests (written). Exam (written).
Category theory.	reading.	

Formulate and prove basic propositions (statements) related to Category theory. The students will learn to rigorously construct their mathematical arguments.	Lecture. Practice. Individual reading.	Tests (written). Exam (written).
Apply basic propositions (statements) related to Category theory.	Lecture. Practice. Individual reading.	Tests (written). Exam (written).

			Individual work: time and assignments						
Course content: breakdown of the topics	Lectures	Tutorials	Seminars	Practice	Contact hours	Individual work	Assignments		
 Set theory. Subsets. Russell's Paradox. NBG and ZF set axiom systems. Functions as product sets. Definition of Category, first examples: Set, Finset, Poset, Finord, product categories, arrow categories. 	18				18	30	Individual reading. Problem solving.		
2. Basic properties of Categories. Iso arrows, initial and terminal objects, products and co-products, limits and co-limits, equalizers and co-equalizers, pullback, pushouts, exponentiation.	24				24	50	Individual reading. Problem solving.		
3. Functors and Natural transformations. Yoneda lemma.	6				6	2	Individual reading.		
Consultations									
Exam		2							
Tests (written)		4							
Iš viso	48	6		16	48	82			

Assessment strategy	Weig ht(%)	Assessment time	Assessment criteria
Tests (written) during lectures.	Aprox 50	During semester	There is a short test during the lecture. It is possible to collect up to 10 points.
Exam (written)	Aprox 50	Exam after the semester	Exam consists of theory questions and exercises (of diverse difficulty). During the exam it is possible to collect up to 10 points.

Author	Year	Title	Number or	Publisher or URL
			volume	
Reading				
R. Goldblatt	1984	Topoi. The categorial analysis of logic. Second edition.		North-Holland Publishing Co. Aviable online
		Chapters 5 and 9.		bia/1403013939#toc
P. Smith (University of Cambridge)	2018	Category Theory: A Gentle Introduction		https://www.logicmatters.net/r esources/pdfs/GentleIntro.pdf
Additional reading				
Brendan Fong, David I. Spivak	2019	SevenSketchesinCompositionality:An		Cambridge University Press, https://doi.org/10.1017/978110

	Invitation to Applied Category	8668804,
	Theory	https://arxiv.org/abs/1803.0531
		6