

VILNIUS UNIVERSITY

LIGHT ENGINEERING

Programme type	Bachelor's studies (university)
Field of study	Light Engineering
Study area	Technology Sciences
Qualification awarded	Bachelor in Materials Technologies
Length of programme	3.5 years (7 semesters)
Scope of programme (ECTS)	210
Language of instruction	English/Lithuanian
Location	Vilnius, Lithuania
Starting date	1 st of September
Tuition fee EU students	2242 EUR/year
Tuition fee Non-EU students	3500 EUR/year

PROGRAMME DESCRIPTION

• The objective of Light Engineering studies is to achieve the fundamental knowledge of physics, chemistry, and mathematics, the applied understanding of material synthesis and characterization, operation principles of lasers, photovoltaic and light emitting devices, and, finally, to develop and train the practical technological and engineering skills needed for work in lasers, laser technology, modern lighting, photovoltaics, photonics and semiconductor industries enterprises.

The study program is designed for developing of skills to carry out standard laboratory procedures, to synthesize materials and to apply chemical knowledge for the processes to development, or to the deeper understanding of the principles of operation of modern lasers, laser beams and how to characterize and manipulate them. This will be achieved through training in the laboratory, practices in experiments based on group and individual work.

The studies include a balanced set of theoretical lectures, practical seminars and laboratory training, based on group and individual work.

• Career opportunities

The graduates will acquire knowledge and competences allowing them to pursue a carrier in light technology industry in Lithuania or abroad.

• Access to further studies

The graduates will be able to continue their studies at Masters and PhD levels. The nearest postgraduate directions - laser physics and optical technology, laser technology, material science and semiconductor physics, Optoelectronic Materials and Technologies.

KEY LEARNING OUTCOMES

Having completed *Light Engineering* programme a graduate acquires professional competence to carry out complex work which requires the fundamental knowledge of physics, chemistry, and mathematics, as well as applied understanding of material synthesis and characterization, operation principles of lasers, photovoltaic and light emitting devices, and the practical skills of programming, general lighting design, and standard laboratory procedures. The graduates will gain the technological skills and engineering competences in the following fields of high-tech: understanding of optical systems operation, analysis and development; knowledge of semiconductor electronic and optoelectronic devices operating principles; material synthesis and knowledge of technological processes; understanding of the principles of operation of modern lasers; modern digital modelling techniques, the software for the process automation and control.

COURSE INFORMATION

Course Type	1 st Semester	2 nd Semester	3 rd Semester
Compulsory Courses	General Physics I (5 ECTS) Higher Mathematics I (5 ECTS) English for Specific Purposes (5 ECTS)	General Physics II (5 ECTS) Higher Mathematics II (10 ECTS)	General Physics III (5 ECTS) Solid State Physics (10 ECTS)
	Study Skills and Computer Literacy for Physicists (5 ECTS)	Research and Innovation Management (5 ECTS)	Visual Programming (5 ECTS)
	Basic Concepts in Chemistry (5 ECTS)	Numerical Methods I (5 ECTS)	Applied Electronics I (5 ECTS)
	Technical Drawings (5 ECTS)	General Education Electives I (5 ECTS)	General Education Electives II (5 ECTS)

The programme has the following structure

Course Type	4 th Semester	5 th Semester	6 th Semester	7 th Semester
	General Physics IV (5 ECTS)	Semiconductors Growth Technologies (5 ECTS)	Optoelectronic and Lasers Engineering (5 ECTS)	Practice (15 ECTS)
Compulsory	Computerized Physical and Technological Measurements (5 ECTS)	Laser Technology (5 ECTS)	Metrology of Light Sources and Components (5 ECTS)	Final Thesis (15 ECTS)
Courses	Lasers (5 ECTS)	Organic Optoelectronics (5 ECTS)	Optical System Design (5 ECTS)	
	Optoelectronics (5 ECTS)	Solar Energy and Photovoltaics (5 ECTS)	Materials Characterization Techniques (5 ECTS)	
	Numerical Methods II (5	General Education	Course Project (5 ECTS)	

Course Type	4 th Semester	5 th Semester	6 th Semester	7 th Semester
	ECTS)	Electives III (5 ECTS)		
Elective	Functional and Smart Materials (5 ECTS)	Optical Spectroscopy (5 ECTS)	Fiber Technology (5 ECTS)	
Courses	Applied Electronics II (5 ECTS)	Modern Illumination Technologies and Light Design (5 ECTS)	Nano- and Microstructure Technologies (5 ECTS)	

GRADUATION REQUIREMENTS

The students are expected to have formed comprehensive both theoretical knowledge and practical skills in the fields of lasers, organic and inorganic semiconductor light emitters, intelligent lighting solutions, solar cells and other technologies dealing with visible, ultraviolet, and infrared light.

ADMISSION REQUIREMENTS AND SELECTION CRITERIA

- Matura (high school leaving) certificate;
- The selection criteria are based on the weighted average of relevant grades in mathematics, physics, native language and English (foreign) language.

EXAMINATION AND ASSESSMENT REGULATIONS

http://www.vu.lt/en/studies/academic-information/credit-and-grading-system

Acad	lemic	contact	t
			-

Assoc. prof. dr. Renata Butkutė renata.butkute@ftmc.lt

Please apply for more information at Admission

Admission contact

kutė Please apply for more information a Office by e-mail <u>admissions@cr.vu.lt</u>