DOCTORAL STUDIES COURSE UNIT DESCRIPTION

<table>
<thead>
<tr>
<th>Subject</th>
<th>Scientific Field</th>
<th>Faculty</th>
<th>Center/Institute/ Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random processes</td>
<td>Physics N 002</td>
<td>Faculty of physics</td>
<td>Institute of Theoretical Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Student’s workload</th>
<th>Credits</th>
<th>Student’s workload</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>1,5</td>
<td>Consultations</td>
<td>1,5</td>
</tr>
<tr>
<td>Independent study</td>
<td>3</td>
<td>Seminars</td>
<td>3</td>
</tr>
</tbody>
</table>

Course annotation

Shapes of spectral lines. Natural line width. Doppler broadening. Impact and statistical line broadening.

Fourier analysis. Power spectral density. Relaxation time and its reveals in correlations and power spectra. Wavelet method.

Point processes. Examples and generalizations. Theory and models of point processes.

Stochastic integrals. Definitions. Examples. Ito stochastic integral. Stratonovich integral.

List of literature

<table>
<thead>
<tr>
<th>Consulting teachers</th>
<th>Scientific degree</th>
<th>Pedagogical name</th>
<th>Main scientific works published in a scientific field in last 5 year period</th>
</tr>
</thead>
</table>
6. Ruseckas J. and Kaulakys B. |

Certified during Doctoral Committee session 21/02/2017, protocol No. 108

Committee Chairman prof. S. Juršėnas