COURSE OF DOCTORAL STUDIES

Course title	Field of science (branch) code	University / Faculty	Institute / Department	
Investigation	Natural Sciences (Geology)	Vilnius University /	Institute of Geosciences /	
methods of	N 005	Faculty of Chemistry and		
crystalline rocks		Geosciences		
Study methods	Number of credits allocated	Study methods	Number of credits allocated	
Lectures		Seminars		
Individual work	11	Consultations		
Course annotation				
	Emothoda is applied for investiga	tion of anystalling rooks (ignor	us and metamorphic). Identification	
			anning Electron Microscope (SEM).	
Basics of microscopy and application in igneous and metamorphic petrology. Mineral composition at a point,				

identification of obtained spectra and usage for different tasks. Optimal characteristics for the SEM application and sample preparation.

Whole rock chemical analysis: "wet chemistry", X-ray fluorescence (XRF), Inductively coupled plasma massspectrometry (ICP-MS), atomic absorption (AA) methods. Presentation of results and their interpretation. Data analysis and application for rock classification and discrimination.

Radioactive and radiogenic isotope systems used for age determination of crystalline rocks. Samarium and neodymium (Sm/Nd) ratios for dating of crustal and metamorphic ages, determining the mantle type. 87Sr/86Sr ratios for source rock determination. U-Pb for rock and geological process dating. Equipment used for isotopic investigations: conventional mass-spectrometry, Secondary Ion Mass-spectrometry (SIMS), Laser ablation ICP-MS (LA-ICP-MS) etc. 40Ar/39Ar ratio for timing of mineral (process0 closure. Applications of other methods, such as Re-Os, Lu-Hf etc.

Stable isotopes (O, S, C) and possibilities of their application for evolution of igneous and metamorphic rocks. Student can chose only part of the above methods.

Required readings

Winter, John D., 2014. Principles of Igneous and Metamorphic Petrology. PEARSON, UK. 739 p.

Philpotts, Anthony R., 2003. Petrography of igneous and metamorphic rocks. Waveland Press. 179 p.

Rollinson, H.R., 1993. Using geochemical data: evaluation, presentation, interpretation. 352 p.

Reed, S.J.B., 2005. Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. Cambridge University press.

Faure, G. and Mensing T.M., 2005. Isotopes: principles and applications (Third Edition). John Willey & Sons, Inc., Hoboken, New Jersey.

Motuza, G., 2006. Magminių ir metamorfinių uolienų petrologija. Vilniaus universiteto leidykla.

Rollinson H. R., 2007. Early Earth Systems. A Geochemical Approach. Blackwell Publishing. 285 psl.

Consulting lecturers Name, surname	Degree	The most important works in the field of science (branch) have been published during the last 5 years
Gražina Skridlaitė	Dr., assoc. prof.	Skridlaite G., Bogdanova S., Taran L. and Baginski B., 2014. Recurrent high grade metamorphism recording a 300 Ma long Proterozoic crustal evolution in the western part of the East European Craton. <i>Gondwana Research</i> , V 25 (2), 649-667

	 Vejelyte, I., Bogdanova, S., Skridlaite, G., 2015. Early Mesoproterozoic magmatism in northwestern Lithuania: a new U-Pb zircon dating. <i>Estonian Journal of Earth Sciences</i>, 64, 3, 189-198. Bogdanova, S., Gorbatschev, R., Skridlaite, G., Soesoo, A., Taran, L., Kurlovich, D., 2015. Trans-Baltic Palaeoproterozoic correlations towards the reconstruction of supercontinent Columbia/Nuna. <i>Precambrian Research</i>, 259, 5-33 Grazina Skridlaite, Laurynas Siliauskas, Martin J. Whitehouse, Åke Johansson, Andrius Rimsa, 2021. On the origin and evolution of the 1.86–1.76 Ga Mid-Baltic Belt in the western East European Craton. <i>Precambrian Research</i>, V. 367, https://doi.org/10.1016/j.precamres.2021.106403
--	--

Laurynas Šiliauskas	Dr.	 Prusinskiene, S., Siliauskas, L., Skridlaite, G., 2017. Varieties and chemical composition of magnetite in the Varena Iron Ore deposits. <i>Chemija</i>, Vol. 28. No. 1, p. 39–57 Siliauskas, L., Skridlaite, G., Baginski, B., Whitehouse M. & Prusinskiene, S., 2018. What the ca. 1.83 Ga gedrite-cordierite schists in the crystalline basement of Lithuania tell us about the late Palaeoproterozoic accretion of the East European Craton, <i>GFF</i>, 140:4, 332-344,
Approved by the	e doctoral co	mmittee of Geology (N 005) on 1 st of December 2022 (No. (7.17 E) 15600-KT-467).
Committee Chai	rman prof. o	lr. Sigitas Radzevičius