Magnetic resonance spectroscopy group

Keywords: NMR of advanced materials in solid and liquid states; CW-FT EPR spectroscopy

Research group activities

- Crystallographic aspects, spin diffusion and spin-clusters size profile determination in nano-structured complex solids applying CP-MAS technique;
- Structure elucidation of organic compounds applying high resolution 1D/2D NMR techniques;
- Molecular-ionic processes in ionic liquids and composites forming liquid crystalline iono-gel mesophases;
- Large-amplitude proton dynamics in hydrogen bonded systems:
- EPR Studies of defects induced by (I) impurities; (II) by ionizing radiation: (III) free radicals in bio-systems.

Proposal

NMR spectroscopy of solids and liquids:

Magic angle spinning (up to 15 kHz) experiments for solid state NMR with 400 MHz wide bore magnets. The probe possesses an X channel which is tunable from 15N to 31P. Wide line NMR experiments – starting from polymers to single crystal studies and metal physics in frequency range 109Ag – 31P; Variable temperature range –150°C to +400°C; Static low temperature wide line NMR applications for 109Ag – 31P; Variable temperature range from room temperature to > 8K.

EPR spectroscopy:

CW regime: sensitivity: weak pitch international standard 2500:1; absolute 1.2 x 109 spins / G; up to 80 MHz tuning range; FT regime: sensitivity: with 10 μ M TEMPOL in toluene in 10 sec 200:1; 2 ns time pulse resolution. Helium Temperature Control System (3.8 - 300 K); Variable Nitrogen Temperature Control System (Temperature range 100 K - 500 K); Programmable one axis goniometer, 1/8 degree resolution.

Meet our team

Lead researcher

Prof. Habil. Dr. Vytautas Balevičius

Team members

Prof. Habil. Dr. Jūras Banys

Dr. Vidmantas Kalendra

Dr. Vytautas Klimavičius

Dr. Arūnas Maršalka

PhD Students

Mantas Šimėnas

Laurynas Dagys

Research outcomes

Most important publications

- Balevicius V., Aidas K., Svoboda I., and Fuess H., Hydrogen bonding in pyridine N-oxide/acid systems: proton transfer and fine details revealed by FTIR, NMR and X-ray diffraction.
 J. Phys. Chem. A, 2012, v.116, p. 8753-8761;
- Klimavicius V., Gdaniec, Z., Kausteklis, J., Aleksa, V., Aidas, K., and Balevicius, V., NMR and Raman Spectroscopy Monitoring of Proton/Deuteron Exchange in Aqueous Solutions of Ionic Liquids Forming Hydrogen Bond: A Role Of Anions, Self-Aggregation, and Mesophase Formation. J. Phys. Chem. B, 2013, v.117, p. 10211-10220;
- Klimavicius V., Kareiva A., and Balevicius V., Solid-State NMR
 Study of Hydroxyapatite Containing Amorphous Phosphate
 Phase and Nano-Structured Hydroxyapatite: Cut-Off Averaging of CP MAS Kinetics and Size Profiles of Spin Clusters. J.

 Phys. Chem. C, 2014, v.118, p. 28914-28921;

- Klimavicius V., Dagys L., and Balevicius V., Subnanoscale
 Order and Spin Diffusion in Complex Solids through the
 Processing of Cross-Polarization Kinetics. J. Phys. Chem. C,
 2016, v.120, p. 3542-3549;
- Dagys L., Klimavicius V., and Balevicius V., Processing of CP MAS kinetics: Towards NMR crystallography for complex solids. - J. Chem. Phys. 2016, v.145, 114202 (9).

Resources

Bruker AVANCE 400 WB and Bruker AVANCE 400 SB spectrometers. Frequency 400 MHz, 2 superconducting magnets of wide- and standard bore, electronic units for independent (parallel) NMR investigation of solid and liquid state.

Bruker X-Band CW/FT EPR Elexys 580 spectrometer, working in pulse FT and CW regimes.

Contacts

Prof. Habil. Dr. Vytautas Balevičius Faculty of Physics

Phone: +370 5 2234588

E-mail: vytautas.balevicius@ff.vu.lt

More about the faculty: http://ff.vu.lt/en

Department for Research and Innovation

Phone: +370 5 268 7006 E-mail: innovations@mid.vu.lt

More information: http://www.innovations.vu.lt